Hamilton-Jacobi Theory in the Calculus of Variations Under Partial Convexity Assumptions on the Lagrangian

被引:0
|
作者
Penot, Jean-Paul [1 ]
机构
[1] UPMC Univ, Sorbonne Univ, Paris, France
关键词
Subdifferential; value function; partial convexity; Lagrangian; Hamilton-Jacobi theory; calculus of variations;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using general results about subdifferentials of value functions, under partial convexity assumptions on the Lagrangian, we derive the main result about the Hamilton-Jacobi theory in the calculus of variations obtained by R. T. Rockafellar and P. Wolenski [Convexity in Hamilton-Jacobi theory, SIAM J. Control Optimization 39/5 (2000) 1323-1372] under full convexity of the Lagrangian. Since a number of results in the calculus of variations are known to be valid under such an assumption, it is tempting to tackle such an aim, even if the nice duality theory presented in the work cited above seems to be out of reach.
引用
收藏
页码:653 / 660
页数:8
相关论文
共 50 条
  • [31] HAMILTON-JACOBI THEORY WITH MIXED CONSTRAINTS
    BERGMANN, PG
    TRANSACTIONS OF THE NEW YORK ACADEMY OF SCIENCES, 1971, 33 (01): : 108 - &
  • [32] Structural aspects of Hamilton-Jacobi theory
    Carinena, J. F.
    Gracia, X.
    Marmo, G.
    Martinez, E.
    Munoz-Lecanda, M. C.
    Roman-Roy, N.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2016, 13 (02)
  • [33] HAMILTON-JACOBI TREATMENT OF LAGRANGIAN WITH FERMIONIC AND SCALAR FIELD
    Eshraim, W. I.
    Farahat, N. I.
    ROMANIAN JOURNAL OF PHYSICS, 2008, 53 (3-4): : 437 - 443
  • [34] PATH CONCEPTS IN HAMILTON-JACOBI THEORY
    LANDAUER, R
    AMERICAN JOURNAL OF PHYSICS, 1952, 20 (06) : 363 - 367
  • [35] HAMILTON-JACOBI THEORY OF CONTINUOUS SYSTEMS
    GULER, Y
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1987, 100 (02): : 251 - 266
  • [36] Hamilton-Jacobi Theory and Information Geometry
    Ciaglia, Florio M.
    Di Cosmo, Fabio
    Marmo, Giuseppe
    GEOMETRIC SCIENCE OF INFORMATION, GSI 2017, 2017, 10589 : 495 - 502
  • [37] HAMILTON-JACOBI THEORY FOR CONSTRAINED SYSTEMS
    DOMINICI, D
    LONGHI, G
    GOMIS, J
    PONS, JM
    JOURNAL OF MATHEMATICAL PHYSICS, 1984, 25 (08) : 2439 - 2452
  • [38] Regularity theory for Hamilton-Jacobi equations
    Gomes, DA
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 187 (02) : 359 - 374
  • [39] Hamilton-Jacobi Theory and Moving Frames
    Macarthur, Joshua D.
    McLenaghan, Raymond G.
    Smirnov, Roman G.
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2007, 3
  • [40] HAMILTON-JACOBI THEORY WITH MIXED CONSTRAINTS
    BERGMANN, PG
    ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1971, 172 (14) : 572 - &