Hamilton-Jacobi Theory in the Calculus of Variations Under Partial Convexity Assumptions on the Lagrangian

被引:0
|
作者
Penot, Jean-Paul [1 ]
机构
[1] UPMC Univ, Sorbonne Univ, Paris, France
关键词
Subdifferential; value function; partial convexity; Lagrangian; Hamilton-Jacobi theory; calculus of variations;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using general results about subdifferentials of value functions, under partial convexity assumptions on the Lagrangian, we derive the main result about the Hamilton-Jacobi theory in the calculus of variations obtained by R. T. Rockafellar and P. Wolenski [Convexity in Hamilton-Jacobi theory, SIAM J. Control Optimization 39/5 (2000) 1323-1372] under full convexity of the Lagrangian. Since a number of results in the calculus of variations are known to be valid under such an assumption, it is tempting to tackle such an aim, even if the nice duality theory presented in the work cited above seems to be out of reach.
引用
收藏
页码:653 / 660
页数:8
相关论文
共 50 条
  • [1] RUND,H - HAMILTON-JACOBI THEORY IN CALCULUS OF VARIATIONS
    URBAN, P
    ACTA PHYSICA AUSTRIACA, 1967, 25 (03): : 288 - +
  • [2] RUND,H - HAMILTON-JACOBI THEORY IN CALCULUS OF VARIATIONS
    KILMISTE.CW
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 1967, 42 (168P): : 766 - &
  • [3] RUND,H - HAMILTON-JACOBI THEORY IN CALCULUS OF VARIATIONS
    METZER, K
    MATRIX AND TENSOR QUARTERLY, 1966, 17 (02): : 66 - &
  • [4] On the Hamilton-Jacobi theory for singular lagrangian systems
    de Leon, Manuel
    Carlos Marrero, Juan
    Martin de Diego, David
    Vaquero, Miguel
    JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (03)
  • [5] CONVEXITY IN HAMILTON-JACOBI THEORY II: ENVELOPE REPRESENTATIONS
    Rockafellar, R. Tyrrell
    Wolenski, Peter R.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 39 (05) : 1351 - 1372
  • [6] A geometrical interpretation of the quantum potential in terms of the Hamilton-Jacobi theory in the calculus of variations
    Sherry, GC
    FOUNDATIONS OF PHYSICS LETTERS, 1996, 9 (04) : 383 - 395
  • [7] CONVEXITY IN HAMILTON-JACOBI THEORY I: DYNAMICS AND DUALITY
    Rockafellar, R. Tyrrell
    Wolenski, Peter R.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 39 (05) : 1323 - 1350
  • [8] Uniqueness of solutions to Hamilton-Jacobi equations arising in the Calculus of Variations
    Dal Maso, G
    Frankowska, H
    OPTIMAL CONTROL AND PARTIAL DIFFERENTIAL EQUATIONS: IN HONOR OF PROFESSOR ALAIN BENSOUSSAN'S 60TH BIRTHDAY, 2001, : 335 - 345
  • [9] Lagrangian submanifolds and the Hamilton-Jacobi equation
    Barbero-Linan, Maria
    de Leon, Manuel
    Martin de Diego, David
    MONATSHEFTE FUR MATHEMATIK, 2013, 171 (3-4): : 269 - 290
  • [10] The Teleparallel Lagrangian and Hamilton-Jacobi formalism
    Pimentel, BM
    Pompeia, PJ
    da Rocha-Neto, JF
    Teixeira, RG
    GENERAL RELATIVITY AND GRAVITATION, 2003, 35 (05) : 877 - 884