CFD-based shape optimization of a plate-fin heat exchanger

被引:0
|
作者
Anibal, Joshua L. [1 ]
Martins, Joaquim R. R. A. [1 ]
机构
[1] Univ Michigan, Dept Aerosp Engn, Ann Arbor, MI 48109 USA
来源
关键词
ALGORITHM; DESIGN;
D O I
暂无
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The plate-fin heat exchanger is common in aerospace applications because of its small size and lightweight. Heat exchangers are vital to aircraft applications such as jet engines, environmental control systems, and thermal management systems for electric components. The thermal management of waste heat from electric components in particular is becoming increasingly important as aircraft become more electric. Additionally, the prospect of new hydrogen-powered aircraft brings with it a new set of thermal management challenges. By minimizing the weight and drag penalties of heat exchangers, we can improve the overall efficiency of current and future aircraft. Analytical equations for heat exchanger performance are useful for rough sizing but lack the fidelity required to design improved shape configurations. In this work, we leverage gradient-based design optimization with high-fidelity CFD-based simulation to improve the detailed shaping of a plate-fin heat exchanger with plain fins. Furthermore, the results of our optimizations show that plate-fin designs optimized for minimum drag and mass differ substantially. The difference in mass between the drag-minimizing and mass-minimizing designs is largest (approximate to 50%) when the required heat load is largest. This suggests a greater potential mass savings for heat exchangers designed for higher heat loads. These results highlight the potential of gradient-based shape optimization methods to generate improved heat exchangers for weight-critical aerospace applications.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] A thermodynamic method for the comparison of plate-fin heat exchanger performance
    Tagliafico, L
    Tanda, G
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1996, 118 (03): : 805 - 809
  • [42] New application of plate-fin heat exchanger with regenerative cryocoolers
    Chang, Ho-Myung
    Gwak, Kyung Hyun
    CRYOGENICS, 2015, 70 : 1 - 8
  • [43] CFD simulation on inlet configuration of plate-fin heat exchangers
    Zhang, Z
    Li, YZ
    CRYOGENICS, 2003, 43 (12) : 673 - 678
  • [44] BOILING OF LIQUIDS IN A COMPACT PLATE-FIN HEAT-EXCHANGER
    PANITSIDIS, H
    GRESHAM, RD
    WESTWATER, JW
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1975, 18 (01) : 37 - 42
  • [45] PERFORMANCE RANKING OF PLATE-FIN HEAT-EXCHANGER SURFACES
    SOLAND, JG
    ROHSENOW, WM
    MACK, WM
    MECHANICAL ENGINEERING, 1977, 99 (06) : 110 - 110
  • [46] Fin effects in flow channels of plate-fin compact heat exchanger cores
    Manglik R.M.
    Huzayyin O.A.
    Jog M.A.
    Journal of Thermal Science and Engineering Applications, 2011, 3 (04)
  • [47] Unevenness of flow distribution in plate-fin heat exchanger batteries
    Matveev S.A.
    Smorodin A.I.
    Chemical and Petroleum Engineering, 2013, 49 (5-6) : 320 - 322
  • [48] Characteristics of a plate-fin heat exchanger with phase change materials
    Aoyama Gakuin Univ, Tokyo, Japan
    J Enhanced Heat Transfer, 4 (273-281):
  • [49] UNEVENNESS OF FLOW DISTRIBUTION IN PLATE-FIN HEAT EXCHANGER BATTERIES
    Matveev, S. A.
    Smorodin, A. I.
    CHEMICAL AND PETROLEUM ENGINEERING, 2013, 49 (5-6) : 320 - 322
  • [50] Quantitative flow visualization in the distributor of a plate-fin heat exchanger
    Jeong, Tae-Sik
    Yu, Jin-ho
    Lim, Dong-Il
    Kim, Hyoung-Bum
    JOURNAL OF VISUALIZATION, 2018, 21 (06) : 1031 - 1041