Feature Contrastive Transfer Learning for Few-Shot Long-Tail Sonar Image Classification

被引:0
|
作者
Bai, Zhongyu [1 ]
Xu, Hongli [1 ]
Ding, Qichuan [1 ]
Zhang, Xiangyue [1 ]
机构
[1] Northeastern Univ, Fac Robot Sci & Engn, Shenyang 110819, Peoples R China
基金
中国国家自然科学基金;
关键词
Sonar; Heavily-tailed distribution; Image classification; Feature extraction; Training; Contrastive learning; Transfer learning; Vectors; Tail; Sonar measurements; Sonar image classification; transfer learning; contrastive learning; few-shot; long-tail;
D O I
10.1109/LCOMM.2025.3532258
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Sonar image classification is challenging due to the limited availability and long-tail distribution of labeled sonar samples. In this work, a Feature Contrastive Transfer Learning (FCTL) framework is proposed for few-shot long-tailed sonar image classification. The proposed framework combines transfer learning and contrastive learning to improve model performance under limited labeled data. First, a deep convolutional neural network (CNN) is pre-trained on a large-scale image dataset to learn general feature representations. Then, contrastive learning is employed to maximize the similarity between positive sample pairs and minimize the similarity between positive and negative sample pairs. Specifically, positive samples are generated through a Gaussian feature enhancement method, while the remaining samples in a batch are negative. In addition, a balanced sampling strategy is employed to optimize the unbalanced feature distribution of long-tailed samples. Experiments on two different sonar image datasets demonstrate that the FCTL framework outperforms existing methods in few-shot long-tailed sonar image classification tasks.
引用
收藏
页码:562 / 566
页数:5
相关论文
共 50 条
  • [41] Feature Rectification and Distribution Correction for Few-Shot Image Classification
    Cheng, Qiping
    Liu, Ying
    Zhang, Weidong
    2024 6TH INTERNATIONAL CONFERENCE ON NATURAL LANGUAGE PROCESSING, ICNLP 2024, 2024, : 451 - 457
  • [42] Dual Feature Reconstruction Network For Few-shot Image Classification
    Guo, Xiaowei
    Wu, Jijie
    Ren, Kai
    Song, Qi
    Li, Xiaoxu
    2023 ASIA PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE, APSIPA ASC, 2023, : 1579 - 1584
  • [43] Joint Feature Disentanglement and Hallucination for Few-Shot Image Classification
    Lin, Chia-Ching
    Chu, Hsin-Li
    Wang, Yu-Chiang Frank
    Lei, Chin-Laung
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 9245 - 9258
  • [44] Heterogeneous Few-Shot Learning for Hyperspectral Image Classification
    Wang, Yan
    Liu, Ming
    Yang, Yuexin
    Li, Zhaokui
    Du, Qian
    Chen, Yushi
    Li, Fei
    Yang, Haibo
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [45] CPCL: Conceptual prototypical contrastive learning for Few-Shot text classification
    Cheng, Tao
    Cheng, Hua
    Fang, Yiquan
    Liu, Yufei
    Gao, Caiting
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 45 (06) : 11963 - 11975
  • [46] Few-shot learning for skin lesion image classification
    Xue-Jun Liu
    Kai-li Li
    Hai-ying Luan
    Wen-hui Wang
    Zhao-yu Chen
    Multimedia Tools and Applications, 2022, 81 : 4979 - 4990
  • [47] Deep Few-Shot Learning for Hyperspectral Image Classification
    Liu, Bing
    Yu, Xuchu
    Yu, Anzhu
    Zhang, Pengqiang
    Wan, Gang
    Wang, Ruirui
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (04): : 2290 - 2304
  • [48] Few-Shot Infrared Image Classification with Partial Concept Feature
    Tan, Jinyu
    Zhang, Ruiheng
    Zhang, Qi
    Cao, Zhe
    Xu, Lixin
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT IV, 2024, 14428 : 343 - 354
  • [49] Feature Transductive Distribution Optimization for Few-Shot Image Classification
    Liu, Qing
    Tang, Xianlun
    Wang, Ying
    Li, Xingchen
    Jiang, Xinyan
    Li, Weisheng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2025, 35 (03) : 2230 - 2243
  • [50] CLUR: Uncertainty Estimation for Few-Shot Text Classification with Contrastive Learning
    He, Jianfeng
    Zhang, Xuchao
    Lei, Shuo
    Alhamadani, Abdulaziz
    Chen, Fanglan
    Xiao, Bei
    Lu, Chang-Tien
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 698 - 710