Kinetic control of high pressure phase transitions in anatase TiO2

被引:0
|
作者
Chen, Xiaohui [1 ]
Zhang, Yi [1 ]
Liu, Lei [1 ]
Ye, Shijia [1 ]
Li, Shourui [1 ]
Jing, Qiumin [1 ]
Gao, Junjie [1 ]
Li, Jun [1 ]
Wu, Qiang [1 ]
Wang, Hao [2 ]
Lin, Chuanlong [2 ]
机构
[1] Natl Key Lab Shock Wave & Detonat Phys, Mianyang 621900, Sichuan, Peoples R China
[2] Ctr High Pressure Sci & Technol Adv Res, Beijing 100094, Peoples R China
基金
中国国家自然科学基金;
关键词
X-RAY-DIFFRACTION; STABILITY;
D O I
10.1103/PhysRevB.111.104108
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Understanding the interplay between the thermodynamics and kinetics of phase transition under high pressure is a current challenge in material and physical sciences. Here, we present the structural response of anatase TiO2 up to 20 GPa and over compression rates ranging from 0.03 to 3.61 GPa/s, using a piezo-driven dynamic diamond anvil cell coupled with time-resolved Raman spectroscopy. It is found that the phase evolution of anatase TiO2 follows the expected thermodynamics path (i.e., anatase-* alpha-PbO2-* baddeleyite) regardless of the applied compression rate, however, the formation conditions of high pressure phases are kinetically controlled. Both phase boundaries increase approximately linearly with the logarithm of compression rate, that seems to resolve apparent contradictions between previous high pressure results. We ascribe these to the sluggish transition kinetics of a typical reconstructive transition mechanism, and highlight that the compression rate behaves as the third dimension within a high pressure phase diagram.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Gas-phase synthesis of nanostructured anatase TiO2
    Goossens, A
    Maloney, EL
    Schoonman, J
    CHEMICAL VAPOR DEPOSITION, 1998, 4 (03) : 109 - 114
  • [42] A Reversible Phase Transition for Sodium Insertion in Anatase TiO2
    Li, Wei
    Fukunishi, Mika
    Morgan, Benjamin. J.
    Borkiewicz, Olaf J.
    Chapman, Karena W.
    Pralong, Valerie
    Maignan, Antoine
    Lebedev, Oleg I.
    Ma, Jiwei
    Groult, Henri
    Komaba, Shinichi
    Damboumet, Damien
    CHEMISTRY OF MATERIALS, 2017, 29 (04) : 1836 - 1844
  • [43] Characterization of indirect and direct interband transitions of anatase TiO2 by thermoreflectance spectroscopy
    Ho, Ching-Hwa
    Tsai, Ming-Cheng
    Wong, Ming-Show
    APPLIED PHYSICS LETTERS, 2008, 93 (08)
  • [44] Polymorphic transformations in nanostructured anatase (TiO2) under high-pressure shock compression
    A. M. Molodets
    A. A. Golyshev
    Yu. M. Shul’ga
    Technical Physics, 2013, 58 : 1029 - 1033
  • [45] Optical and Acoustic Vibrations Confined in Anatase TiO2 Nanoparticles under High-Pressure
    Saviot, L.
    Machon, D.
    Debbichi, L.
    Girard, A.
    Margueritat, J.
    Krueger, P.
    de Lucas, M. C. Marco
    Mermet, A.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (19): : 10495 - 10501
  • [46] Ammonium oxotrifluorotitanate: morphology control and conversion to anatase TiO2
    Zhou, Lei
    O'Brien, Paul
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2008, 205 (10): : 2317 - 2323
  • [47] Synthesis of Fully Dense Anatase TiO2 Through High Pressure Field Assisted Rapid
    Maglia, Filippo
    Dapiaggi, Monica
    Tredici, Ilenia G.
    Anselmi-Tannburini, Umberto
    NANOSCIENCE AND NANOTECHNOLOGY LETTERS, 2012, 4 (02) : 205 - 208
  • [48] Phase control of hierarchically structured mesoporous anatase TiO2 microspheres covered with {001} facets
    Zhao, Zhao
    Sun, Zaicheng
    Zhao, Haifeng
    Zheng, Min
    Du, Peng
    Zhao, Jialong
    Fan, Hongyou
    JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (41) : 21965 - 21971
  • [49] Can mixed anatase and rutile photocatalyst TiO2 be synthesized under high pressure in water?
    Yu, Cheng-Long
    Liu, Hang
    Song, Jie
    Yang, Jing
    Zhang, Peng-Cheng
    Guo, Fang-Lin
    Hong, Lin
    Hui, Huai-Bing
    MATERIALS LETTERS, 2019, 246 : 133 - 136
  • [50] Polymorphic transformations in nanostructured anatase (TiO2) under high-pressure shock compression
    Molodets, A. M.
    Golyshev, A. A.
    Shul'ga, Yu. M.
    TECHNICAL PHYSICS, 2013, 58 (07) : 1029 - 1033