A Mathematical Framework for Modeling Order Book Dynamics

被引:0
|
作者
Cont, Rama [1 ]
Degond, Pierre [2 ]
Xuan, Lifan [3 ]
机构
[1] Univ Oxford, Math Inst, Oxford OX2 6GG, England
[2] Univ Toulouse, Inst Math Toulouse, CNRS, UPS,UMR5219, F-31062 Toulouse 9, France
[3] Imperial Coll London, Dept Math, London SW7 2AZ, England
来源
SIAM JOURNAL ON FINANCIAL MATHEMATICS | 2025年 / 16卷 / 01期
关键词
limit order book; stochastic model; quantitative finance; market microstructure; measure-valued process; Markov processes; marked point process; infinitesimal generator; LARGE NUMBERS; LAW;
D O I
10.1137/22M1541538
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We present a general framework for modeling the dynamics of limit order books, built on the combination of two modeling ingredients: the order flow, modeled as a general spatial point process, and market clearing, modeled via a deterministic ``mass transport"" operator acting on the distributions of buy and sell orders. At the mathematical level, this leads to a natural decomposition of the infinitesimal generator describing the evolution of the limit order book into two operators: the generator of the order flow and a clearing operator. This decomposition provides a flexible and modular framework for modeling and simulating order book dynamics and studying various scaling limits of discrete order book models. We show that our framework includes previous models as special cases and yields insights into the interplay between order flow and price dynamics.
引用
收藏
页码:123 / 166
页数:44
相关论文
共 50 条
  • [21] A mathematical framework for modeling axon guidance
    Krottje, Johannes K.
    van Ooyen, Arjen
    BULLETIN OF MATHEMATICAL BIOLOGY, 2007, 69 (01) : 3 - 31
  • [22] Mathematical framework for modeling tissue growth
    Volokh, KY
    BIORHEOLOGY, 2004, 41 (3-4) : 263 - 269
  • [23] Mathematical framework for higher order breakage scenarios
    Marchetti, J. M.
    Patruno, L. E.
    Jakobsen, H. A.
    Svendsen, H. F.
    CHEMICAL ENGINEERING SCIENCE, 2010, 65 (22) : 5881 - 5886
  • [24] Mathematical modeling of infectious disease dynamics
    Siettos, Constantinos I.
    Russo, Lucia
    VIRULENCE, 2013, 4 (04) : 295 - 306
  • [25] Introduction to Mathematical Modeling and Chaotic Dynamics
    Denes, Attila
    ACTA SCIENTIARUM MATHEMATICARUM, 2014, 80 (1-2): : 351 - 352
  • [26] Mathematical modeling and optimization of beam dynamics
    Ovsyannikov, DA
    NONLINEAR CONTROL SYSTEMS 2001, VOLS 1-3, 2002, : 13 - 22
  • [27] Mathematical Modeling and Simulation of Antibubble Dynamics
    Yang, Junxiang
    Li, Yibao
    Jeong, Darae
    Kim, Junseok
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2020, 13 (01): : 81 - 98
  • [28] System and Mathematical Modeling of Quadrotor Dynamics
    Goodman, Jacob M.
    Kim, Jinho
    Gadsden, S. Andrew
    Wilkerson, Stephen A.
    UNMANNED SYSTEMS TECHNOLOGY XVII, 2015, 9468
  • [29] Mathematical modeling of the dispersed phase dynamics
    Kholpanov, LP
    Lbyatov, RI
    THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING, 2005, 39 (02) : 190 - 199
  • [30] MATHEMATICAL MODELING OF PULMONARY AIRWAY DYNAMICS
    GOLDEN, JF
    CLARK, JW
    STEVENS, PM
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1973, BM20 (06) : 397 - 404