Research on underwater fish image denoising method based on deep learning

被引:0
|
作者
Xie, Yufeng [1 ,2 ]
Wu, Shuangle [2 ]
Wang, Lang [2 ]
Hu, Qiu [2 ]
机构
[1] Zhejiang Sci Tech Univ, Sch Informat Sci & Engn, Hangzhou, Peoples R China
[2] NingboTech Univ, Signal Intelligence Detect & Life Behav Percept I, Ningbo, Peoples R China
关键词
Underwater image denoising; Deep learning; Blind denoising;
D O I
10.1109/ICIEA61579.2024.10664965
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Underwater fish imagery is an important tool for the study of marine ecology, revealing biodiversity, ecosystem health and changes in fish distribution, helping to protect endangered species and promoting sustainable fisheries. When imaging underwater, image quality is seriously disturbed by a variety of noises, which can significantly affect the clarity and accuracy of the image. In this paper, an underwater fish image denoising method based on deep learning is proposed. The algorithm model consists of two parts: noise estimation subnetwork and non-blind subnetwork. In this case, the noise estimation subnetwork is used to estimate the noise level graph, and the non-blind denoising subnetwork is U-Net with residual for noise reduction. Compared with the traditional deep learning underwater image denoising algorithm, this paper introduces the asymmetric loss function as the basis of algorithm convergence judgement, which further enhances the denoising performance and generalisation ability of the algorithm. In addition, the algorithm is trained with real noisy image pairs to improve the denoising effect. The experimental results show that the method can significantly improve the clarity and recognition rate of underwater fish images while maintaining the image details. The research in this paper provides a new idea and method for underwater biological image processing, which is of great significance for underwater ecological monitoring, aquaculture and other fields.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] A survey on underwater coral image segmentation based on deep learning
    Li, Ming
    Zhang, Hanqi
    Gruen, Armin
    Li, Deren
    GEO-SPATIAL INFORMATION SCIENCE, 2024,
  • [42] Research progress of deep learning in low-dose CT image denoising
    Zhang, Fan
    Liu, Jingyu
    Liu, Ying
    Zhang, Xinhong
    RADIATION PROTECTION DOSIMETRY, 2023, 199 (04) : 337 - 346
  • [43] Model-Based Underwater Image Simulation and Learning-Based Underwater Image Enhancement Method
    Liu, Yidan
    Xu, Huiping
    Zhang, Bing
    Sun, Kelin
    Yang, Jingchuan
    Li, Bo
    Li, Chen
    Quan, Xiangqian
    INFORMATION, 2022, 13 (04)
  • [44] Deep learning-based PET image denoising and reconstruction: a review
    Hashimoto, Fumio
    Onishi, Yuya
    Ote, Kibo
    Tashima, Hideaki
    Reader, Andrew J.
    Yamaya, Taiga
    RADIOLOGICAL PHYSICS AND TECHNOLOGY, 2024, 17 (01) : 24 - 46
  • [45] Deep Learning-Based Fish Detection in Turbid Underwater Images
    Akgul, Tansel
    Calik, Nurullah
    Toreyin, Behcet Ugur
    2020 28TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2020,
  • [46] NVST Image Denoising Based on Self-Supervised Deep Learning
    Lu Xianwei
    Liu Hui
    Shang Zhenhong
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (06)
  • [47] Synthetic Aperture Radar Image Denoising Algorithm Based on Deep Learning
    Fu Xiangwei
    Shan Huilin
    Lu Zongkui
    Wang Xingtao
    ACTA OPTICA SINICA, 2023, 43 (06)
  • [48] Deep learning-based PET image denoising and reconstruction: a review
    Fumio Hashimoto
    Yuya Onishi
    Kibo Ote
    Hideaki Tashima
    Andrew J. Reader
    Taiga Yamaya
    Radiological Physics and Technology, 2024, 17 : 24 - 46
  • [49] Fish species classification in unconstrained underwater environments based on deep learning
    Salman, Ahmad
    Jalal, Ahsan
    Shafait, Faisal
    Mian, Ajmal
    Shortis, Mark
    Seager, James
    Harvey, Euan
    LIMNOLOGY AND OCEANOGRAPHY-METHODS, 2016, 14 (09): : 570 - 585
  • [50] A Denoising Method for Seismic Data Based on SVD and Deep Learning
    Ji, Guoli
    Wang, Chao
    APPLIED SCIENCES-BASEL, 2022, 12 (24):