Exact asymptotic order for generalised adaptive approximations

被引:0
|
作者
Kesseboehmer, Marc [1 ]
Niemann, Aljoscha [1 ]
机构
[1] Univ Bremen, Inst Dynam Syst, Fac Math & Comp Sci 3, Bibliothekstr 5, D-28359 Bremen, Germany
关键词
Adaptive approximation algorithm; Approximation theory; Lq-spectrum; Partition functions; Minkowski dimension; (Coarse) multifractal formalism;
D O I
10.1016/j.jat.2025.106171
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, we present an abstract approach to study asymptotic orders for adaptive approximations with respect to a monotone set function J defined on dyadic cubes. We determine the exact upper order in terms of the critical value of the corresponding J-partition function, and we are able to provide upper and lower bounds in terms of fractal-geometric quantities. With properly chosen J, our new approach has applications in many different areas of mathematics, including the spectral theory of Krein-Feller operators, quantisation dimensions of compactly supported probability measures, and the exact asymptotic order for Kolmogorov, Gel'fand and linear widths for Sobolev embeddings into the Lebesgue space Lp nu. (c) 2025 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).
引用
收藏
页数:22
相关论文
共 50 条
  • [41] New Approximations for the Higher Order Coefficients in an Asymptotic Expansion for the Barnes G-Function
    Issaka, Aziz
    RESULTS IN MATHEMATICS, 2022, 77 (01)
  • [42] Asymptotic solutions of the Helmholtz equation: Generalised Friedlander-Keller ray expansions of fractional order
    Tew, R. H.
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2020, 31 (01) : 1 - 25
  • [43] Exact approximations for rough sets
    Sitnikov, D
    Ryabov, O
    Kravets, N
    Vilchinska, O
    INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, 2003, : 97 - 104
  • [44] ASYMPTOTIC APPROXIMATIONS OF PHASE SHIFTS
    MICHALIK, B
    NUOVO CIMENTO B, 1967, 47 (02): : 194 - &
  • [45] ASYMPTOTIC APPROXIMATIONS IN FINANCIAL MATHEMATICS
    Jordan, Richard
    Tier, Charles
    FRONTIERS OF APPLIED AND COMPUTATIONAL MATHEMATICS, 2008, : 248 - +
  • [46] Exact approximations of Omega numbers
    Calude, Cristian S.
    Dinneen, Michael J.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (06): : 1937 - 1954
  • [47] Generalised entropies and asymptotic complexities of languages
    Kalnishkan, Yuri
    Vyugin, Michael V.
    Vovk, Vladimir
    INFORMATION AND COMPUTATION, 2014, 237 : 101 - 141
  • [48] On asymptotic approximations to entire functions
    Avanesyan, Gagik T.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (28)
  • [49] On asymptotic approximations of the residual currents
    Vidras, A
    Yger, A
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 350 (10) : 4105 - 4125
  • [50] Asymptotic Approximations in Quantum Calculus
    Ahmed Fitouhi
    Kamel Brahim
    Néji Bettaibi
    Journal of Nonlinear Mathematical Physics, 2005, 12 : 586 - 606