Urban Spatiotemporal Event Prediction Using Convolutional Neural Network and Road Feature Fusion Network

被引:0
|
作者
Jiang, Yirui [1 ]
Zhao, Shan [2 ]
Li, Hongwei [2 ]
Wu, Huijing [2 ,3 ]
Zhu, Wenjie [2 ,3 ]
机构
[1] Henan Univ Technol, Sch Artificial Intelligence & Big Data, Zhengzhou 471023, Peoples R China
[2] Zhengzhou Univ, Sch Geosci & Technol, Zhengzhou 450001, Peoples R China
[3] Zhengzhou Univ, Sch Comp & Artificial Intelligence, Zhengzhou 450001, Peoples R China
关键词
smart cities; urban spatiotemporal event; convolutional neural network; road feature fusion network; FLOW PREDICTION; MODEL;
D O I
10.3390/ijgi13100341
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The security challenges faced by smart cities are attracting more attention from more people. Criminal activities and disasters can have a significant impact on the stability of a city, resulting in a loss of safety and property for its residents. Therefore, predicting the occurrence of urban events in advance is of utmost importance. However, current methods fail to consider the impact of road information on the distribution of cases and the fusion of information at different scales. In order to solve the above problems, an urban spatiotemporal event prediction method based on a convolutional neural network (CNN) and road feature fusion network (FFN) named CNN-rFFN is proposed in this paper. The method is divided into two stages: The first stage constructs feature map and structure of CNN then selects the optimal feature map and number of CNN layers. The second stage extracts urban road network information using multiscale convolution and incorporates the extracted road network feature information into the CNN. Some comparison experiments are conducted on the 2018-2019 urban patrol events dataset in Zhengzhou City, China. The CNN-rFFN method has an R2 value of 0.9430, which is higher than the CNN, CNN-LSTM, Dilated-CNN, ResNet, and ST-ResNet algorithms. The experimental results demonstrate that the CNN-rFFN method has better performance than other methods.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Remaining useful life prediction for rolling bearings based on similarity feature fusion and convolutional neural network
    Lei Nie
    Lvfan Zhang
    Shiyi Xu
    Wentao Cai
    Haoming Yang
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44
  • [32] Remaining useful life prediction for rolling bearings based on similarity feature fusion and convolutional neural network
    Nie, Lei
    Zhang, Lvfan
    Xu, Shiyi
    Cai, Wentao
    Yang, Haoming
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2022, 44 (08)
  • [33] Weighted Feature Fusion of Convolutional Neural Network and Graph Attention Network for Hyperspectral Image Classification
    Dong, Yanni
    Liu, Quanwei
    Du, Bo
    Zhang, Liangpei
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 1559 - 1572
  • [34] A Study on the Prediction Method for Spatiotemporal Channel Parameters by Convolutional Neural Network using a Spherical Image
    Ito, Satosih
    Hayashi, Takahiro
    2021 IEEE 32ND ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS (PIMRC), 2021,
  • [35] Network traffic prediction based on feature fusion spatio-temporal graph convolutional network
    Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts and Telecommunications, Beijing
    100876, China
    不详
    100876, China
    Proc SPIE Int Soc Opt Eng,
  • [36] StfNet: A Two-Stream Convolutional Neural Network for Spatiotemporal Image Fusion
    Liu, Xun
    Deng, Chenwei
    Chanussot, Jocelyn
    Hong, Danfeng
    Zhao, Baojun
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (09): : 6552 - 6564
  • [37] Spatiotemporal analysis and prediction of urban evolution patterns using Artificial Neural Network tool
    Patil, Deshbhushan
    Gupta, Rajiv
    PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-URBAN DESIGN AND PLANNING, 2023, 176 (04) : 159 - 169
  • [38] Convolutional Neural Network-Gated Recurrent Unit Neural Network with Feature Fusion for Environmental Sound Classification
    Jinfang Yu Zhang
    Youming Zeng
    Da Li
    Automatic Control and Computer Sciences, 2021, 55 : 311 - 318
  • [39] Bearing Fault Diagnosis with a Feature Fusion Method Based on an Ensemble Convolutional Neural Network and Deep Neural Network
    Li, Hongmei
    Huang, Jinying
    Ji, Shuwei
    SENSORS, 2019, 19 (09)
  • [40] Convolutional Neural Network-Gated Recurrent Unit Neural Network with Feature Fusion for Environmental Sound Classification
    Zhang, Yu
    Zeng, Jinfang
    Li, Youming
    Chen, Da
    AUTOMATIC CONTROL AND COMPUTER SCIENCES, 2021, 55 (04) : 311 - 318