THE CONVERGENCE RATE FOR SCHRODINGER OPERATORS WITH COMPLEX TIME

被引:0
|
作者
Li, Tie [1 ,2 ]
Niu, Yaoming [3 ]
Xue, Ying [2 ]
机构
[1] Hainan Normal Univ, Sch Math & Stat, Haikou 571127, Peoples R China
[2] Inner Mongolia Univ Sci & Technol, Baotou Teachers Coll, Fac Math, Baotou 014030, Peoples R China
[3] Ordos Inst Technol, Fac Math & Comp Engn, Ordos 017000, Peoples R China
基金
中国国家自然科学基金;
关键词
Schrodinger operator; maximal operator; complex time; local estimate; global estimate; MAXIMAL OPERATORS;
D O I
10.4134/JKMS.j230461
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, in one spatial dimension, we study the convergence rate for Schrodinger operators with complex time P (t)(alpha,gamma) ,which is defined by P- t (alpha,gamma) f ( x ) = S (t+it gamma) (alpha) f(x) = integral (R) e (ix xi) e( it) (| xi | alpha) e( - t gamma) (| xi | alpha) f(xi)d xi, where gamma > 0 and a > 0. The convergence rate for Schrodinger operators with complex time is different from that of classical Schrodinger operators in Cao-Fan-Wang (Illinois J. Math. 62: 365-380, 2018).
引用
收藏
页码:1145 / 1170
页数:26
相关论文
共 50 条