THE CONVERGENCE RATE FOR SCHRODINGER OPERATORS WITH COMPLEX TIME

被引:0
|
作者
Li, Tie [1 ,2 ]
Niu, Yaoming [3 ]
Xue, Ying [2 ]
机构
[1] Hainan Normal Univ, Sch Math & Stat, Haikou 571127, Peoples R China
[2] Inner Mongolia Univ Sci & Technol, Baotou Teachers Coll, Fac Math, Baotou 014030, Peoples R China
[3] Ordos Inst Technol, Fac Math & Comp Engn, Ordos 017000, Peoples R China
基金
中国国家自然科学基金;
关键词
Schrodinger operator; maximal operator; complex time; local estimate; global estimate; MAXIMAL OPERATORS;
D O I
10.4134/JKMS.j230461
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, in one spatial dimension, we study the convergence rate for Schrodinger operators with complex time P (t)(alpha,gamma) ,which is defined by P- t (alpha,gamma) f ( x ) = S (t+it gamma) (alpha) f(x) = integral (R) e (ix xi) e( it) (| xi | alpha) e( - t gamma) (| xi | alpha) f(xi)d xi, where gamma > 0 and a > 0. The convergence rate for Schrodinger operators with complex time is different from that of classical Schrodinger operators in Cao-Fan-Wang (Illinois J. Math. 62: 365-380, 2018).
引用
收藏
页码:1145 / 1170
页数:26
相关论文
共 50 条
  • [1] Maximal Schrodinger operators with complex time
    Niu, Yaoming
    Xue, Ying
    ANNALS OF FUNCTIONAL ANALYSIS, 2020, 11 (03) : 662 - 679
  • [2] Convergence of schrodinger operators
    Brasche, Johannes F.
    Ozanova, Katerina
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2007, 39 (01) : 281 - 297
  • [3] Boundedness of maximal operators of Schrodinger type with complex time
    Bailey, Andrew D.
    REVISTA MATEMATICA IBEROAMERICANA, 2013, 29 (02) : 531 - 546
  • [4] ESTIMATES FOR SCHRODINGER MAXIMAL OPERATORS ALONG CURVE WITH COMPLEX TIME
    Niu, Yaoming
    Xue, Ying
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 57 (01) : 89 - 111
  • [5] Rate of convergence of crossover operators
    Ollivier, Y
    RANDOM STRUCTURES & ALGORITHMS, 2003, 23 (01) : 58 - 72
  • [6] Pseudomodes for Schrodinger operators with complex potentials
    Krejcirik, David
    Siegl, Petr
    JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 276 (09) : 2856 - 2900
  • [7] SCHRODINGER OPERATORS WITH COMPLEX SINGULAR POTENTIALS
    Mikhailets, Vladimir
    Molyboga, Volodymyr
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2013, 19 (01): : 16 - 28
  • [8] Stabilization with Arbitrary Convergence Rate for the Schrodinger Equation Subjected to an Input Time Delay
    Li, Yanfang
    Chen, Hao
    Xie, Yaru
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2021, 34 (03) : 975 - 994
  • [9] SCHRODINGER OPERATORS WITH A COMPLEX VALUED POTENTIAL
    Schwartzman, Sol
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (12) : 4203 - 4204
  • [10] Schrodinger Operators with Complex Sparse Potentials
    Cuenin, Jean-Claude
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2022, 392 (03) : 951 - 992