A cancellation theorem for metacyclic group rings

被引:0
|
作者
Johnson, F. E. A. [1 ]
机构
[1] UCL, Dept Math, London WC1E 6BT, England
来源
BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY | 2024年
关键词
Stably free module; Locally free module; Milnor square; PROJECTIVE-MODULES; STABLY FREE;
D O I
10.1007/s13366-024-00772-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A ring has stably free cancellation when every stably free -module is free. Let G = Cp Cq be a finite metacyclic group where p is an odd prime and q is a positive integral divisor of p - 1. We show that the group ring R[G] has stably free cancellation when is a ring of mixed polynomials and Laurent polynomials over the integers. As a consequence, when C (m) 8 is the free abelian group of rank m then the integral group ring Z[G( p, q) x C (m) 8] has stably free cancellation.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Semisimple metacyclic group algebras
    Bakshi, Gurmeet K.
    Gupta, Shalini
    Passi, Inder Bir S.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2011, 121 (04): : 379 - 396
  • [32] Semisimple metacyclic group algebras
    GURMEET K BAKSHI
    SHALINI GUPTA
    INDER BIR S PASSI
    Proceedings - Mathematical Sciences, 2011, 121 : 379 - 396
  • [33] Rings with internal cancellation
    Khurana, D
    Lam, TY
    JOURNAL OF ALGEBRA, 2005, 284 (01) : 203 - 235
  • [34] The cancellation property of rings
    Zhang, Hongbo
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (02) : 780 - 791
  • [35] The Dade group of a metacyclic p-group
    Mazza, N
    JOURNAL OF ALGEBRA, 2003, 266 (01) : 102 - 111
  • [36] On the semisimplicity of twisted group rings and generalized Maschke's theorem
    Thomas, Alanka
    Romeo, P. G.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2023, 16 (12)
  • [37] On the Krull-Schmidt-Azumaya theorem for integral group rings
    Hindman, P
    Klingler, L
    Odenthal, CJ
    COMMUNICATIONS IN ALGEBRA, 1998, 26 (11) : 3743 - 3758
  • [38] AN ADDENDUM TO A NOETHER SKOLEM THEOREM FOR GROUP-GRADED RINGS
    OSTERBURG, J
    QUINN, D
    JOURNAL OF ALGEBRA, 1989, 120 (02) : 414 - 415
  • [39] A cancellation theorem for ideals
    Huneke, C
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2000, 152 (1-3) : 123 - 132
  • [40] A Cancellation Theorem for BCCSP
    Aceto, Luca
    Fokkink, Wan
    Ingolfsdottir, Anna
    FUNDAMENTA INFORMATICAE, 2008, 88 (1-2) : 1 - 21