A cancellation theorem for metacyclic group rings

被引:0
|
作者
Johnson, F. E. A. [1 ]
机构
[1] UCL, Dept Math, London WC1E 6BT, England
来源
BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY | 2024年
关键词
Stably free module; Locally free module; Milnor square; PROJECTIVE-MODULES; STABLY FREE;
D O I
10.1007/s13366-024-00772-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A ring has stably free cancellation when every stably free -module is free. Let G = Cp Cq be a finite metacyclic group where p is an odd prime and q is a positive integral divisor of p - 1. We show that the group ring R[G] has stably free cancellation when is a ring of mixed polynomials and Laurent polynomials over the integers. As a consequence, when C (m) 8 is the free abelian group of rank m then the integral group ring Z[G( p, q) x C (m) 8] has stably free cancellation.
引用
收藏
页数:19
相关论文
共 50 条