EURECOM at SemEval-2024 Task 4: Hierarchical Loss and Model Ensembling in Detecting Persuasion Techniques

被引:0
|
作者
Peskine, Youri [1 ]
Troncy, Raphael [1 ]
Papotti, Paolo [1 ]
机构
[1] EURECOM, Biot, France
关键词
D O I
暂无
中图分类号
学科分类号
摘要
This paper describes the submission of team EURECOM at SemEval-2024 Task 4: Multilingual Detection of Persuasion Techniques in Memes. We only tackled the first sub-task, consisting of detecting 20 named persuasion techniques in the textual content of memes. We trained multiple BERT-based models (BERT, RoBERTa, BERT pre-trained on harmful detection) using different losses (Cross Entropy, Binary Cross Entropy, Focal Loss and a custom-made hierarchical loss). The best results were obtained by leveraging the hierarchical nature of the data, by outputting ancestor classes and with a hierarchical loss. Our final submission consist of an ensembling of our top-3 best models for each persuasion techniques. We obtain hierarchical F1 scores of 0.655 (English), 0.345 (Bulgarian), 0.442 (North Macedonian) and 0.177 (Arabic) on the test set.
引用
收藏
页码:1177 / 1182
页数:6
相关论文
共 50 条
  • [21] UMUTeam at SemEval-2024 Task 4: Multimodal Identification of Persuasive Techniques in Memes through Large Language Models
    Pan, Ronghao
    Antonio Garcia-Diaz, Jose
    Valencia-Garcia, Rafael
    PROCEEDINGS OF THE 18TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2024, 2024, : 655 - 666
  • [22] MAMET at SemEval-2024 Task 7: Supervised Enhanced Reasoning Agent Model
    Kalantari, Mahmood
    Feghhi, Mehdi
    Alamooti, Taha Khany
    PROCEEDINGS OF THE 18TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2024, 2024, : 1058 - 1063
  • [23] TUWien at SemEval-2024 Task 6: Unifying Model-Agnostic and Model-Aware Techniques for Hallucination Detection
    Arzt, Varvara
    Azarbeik, Mohammad Mahdi
    Lasy, Ilya
    Kerl, Tilman
    Recski, Gabor
    PROCEEDINGS OF THE 18TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2024, 2024, : 1183 - 1196
  • [24] Pauk at SemEval-2024 Task 4: A Neuro-Symbolic Method for Consistent Classification of Propaganda Techniques in Memes
    Pauk, Matt
    Pacheco, Maria Leonor
    PROCEEDINGS OF THE 18TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2024, 2024, : 1424 - 1434
  • [25] OtterlyObsessedWithSemantics at SemEval-2024 Task 4: Developing a Hierarchical Multi-Label Classification Head for Large Language Models
    Wunderle, Julia
    Schubert, Julian
    Cacciatore, Antonella
    Zehe, Albin
    Pfister, Jan
    Hotho, Andreas
    PROCEEDINGS OF THE 18TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2024, 2024, : 602 - 612
  • [26] ShefCDTeam at SemEval-2024 Task 4: A Text-to-Text Model for Multi-Label Classification
    Gibbons, Meredith
    Mi, Maggie
    Villavicencio, Aline
    Song, Xingyi
    PROCEEDINGS OF THE 18TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2024, 2024, : 1860 - 1867
  • [27] Genaios at SemEval-2024 Task 8: Detecting Machine-Generated Text by Mixing Language Model Probabilistic Features
    Sarvazyan, Areg Mikael
    Gonzalez, Jose Angel
    Franco-Salvador, Marc
    PROCEEDINGS OF THE 18TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2024, 2024, : 101 - 107
  • [28] Puer at SemEval-2024 Task 4: Fine-tuning Pre-trained Language Models for Meme Persuasion Technique Detection
    Dao, Jiaxu
    Li, Zhuoying
    Su, Youbang
    Gong, Wensheng
    PROCEEDINGS OF THE 18TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2024, 2024, : 64 - 69
  • [29] SuteAlbastre at SemEval-2024 Task 4: Predicting Propaganda Techniques in Multilingual Memes using Joint Text and Vision Transformers
    Anghelina, Ion-Marian
    Buta, Gabriel-Sebastian
    Enache, Alexandru
    PROCEEDINGS OF THE 18TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2024, 2024, : 443 - 449
  • [30] CVCoders at SemEval-2024 Task 4: Unified Multimodal Modelling For Multilingual Propaganda Detection in Memes
    Bakhshande, Fatemezahra
    Naderi, Mahdieh
    Etemadi, Sauleh
    PROCEEDINGS OF THE 18TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2024, 2024, : 1912 - 1918