Discovery of Dual Ion-Electron Conductivity of Metal-Organic Frameworks via Machine Learning-Guided Experimentation

被引:1
|
作者
Bashiri, Robabeh [1 ]
Lawson, Preston S. [1 ]
He, Stewart [2 ]
Nanayakkara, Sadisha [1 ]
Kim, Kwangnam [2 ]
Barnett, Nicholas S. [3 ]
Stavila, Vitalie [4 ]
El Gabaly, Farid [4 ]
Lee, Jaydie [5 ]
Ayars, Eric [6 ]
So, Monica C. [1 ]
机构
[1] Calif State Univ Chico, Dept Chem & Biochem, Chico, CA 95929 USA
[2] Lawrence Livermore Natl Lab, Livermore, CA 95064 USA
[3] Univ Illinois, Dept Phys, Chicago, IL 60607 USA
[4] Sandia Natl Labs, Livermore, CA 94551 USA
[5] Calif State Univ Chico, Coll Nat Sci, Chico, CA 95929 USA
[6] Calif State Univ Chico, Dept Phys, Chico, CA 95929 USA
基金
美国国家科学基金会;
关键词
TRANSPORT; MOF; CHALLENGES;
D O I
10.1021/acs.chemmater.4c02974
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Identifying conductive metal-organic frameworks (MOFs) with a coupled ion-electron behavior from a vast array of existing MOFs offers a cost-effective strategy to tap into their potential in energy storage applications. This study employs classification and regression machine learning (ML) to rapidly screen the CoREMOF database and experimental methodologies to validate ML predictions. This process revealed the structure-property relationships contributing to MOFs' bulk ion-electron conductivity. Among the 60 conductive compounds predicted, only two p-type conductive MOFs, [Cu3(mu 3-OH) (mu 3-C4H2N2O2)3(H3O)]<middle dot>2C2H5OH<middle dot>4H2O (1) and NH4[Cu3(mu 3-OH)(mu 3-C4H2N2O2)3]<middle dot>8H2O or (2) (C4H2N2O = 1H-pyrazole-4-carboxylic acid), were validated for their coupled electron-ion behavior. MOFs utilize earth-abundant copper and pyrazoles as ligands, demonstrating significant potential following thorough electrochemical characterization. Further analysis confirmed the critical role of strong sigma-donating, pi-accepting, and redox-active ligands in promoting electron mobility. In-depth structural investigations revealed that the presence of the O-Cu-N chain significantly influences conductivity, outperforming MOFs with only Cu-N or Cu-O bonds. Additionally, this study highlights how higher ionic conductivity is correlated with the ion mobility through linkers in 1 or the presence of ammonium ions in 2. These structure-property relationships offer valuable insights for future research in using ML coupled with experimentation to design MOFs containing earth-abundant reagents for ion-electron conductivity without employing a host-guest MOF strategy.
引用
收藏
页码:1143 / 1153
页数:11
相关论文
共 50 条
  • [21] Ion Conductivity and Transport by Porous Coordination Polymers and Metal-Organic Frameworks
    Horike, Satoshi
    Umeyama, Daiki
    Kitagawa, Susumu
    ACCOUNTS OF CHEMICAL RESEARCH, 2013, 46 (11) : 2376 - 2384
  • [22] Combining machine learning and metal-organic frameworks research: Novel modeling, performance prediction, and materials discovery
    Li, Chunhua
    Bao, Luqian
    Ji, Yixin
    Tian, Zhehang
    Cui, Mengyao
    Shi, Yubo
    Zhao, Zhilei
    Wang, Xianyou
    COORDINATION CHEMISTRY REVIEWS, 2024, 514
  • [23] Preview of machine learning the quantum-chemical properties of metal-organic frameworks for accelerated materials discovery
    Callaghan, Sarah
    PATTERNS, 2021, 2 (04):
  • [24] Machine learning potentials for metal-organic frameworks using an incremental learning approach
    Vandenhaute, Sander
    Cools-Ceuppens, Maarten
    DeKeyser, Simon
    Verstraelen, Toon
    Van Speybroeck, Veronique
    NPJ COMPUTATIONAL MATERIALS, 2023, 9 (01)
  • [25] Machine learning potentials for metal-organic frameworks using an incremental learning approach
    Sander Vandenhaute
    Maarten Cools-Ceuppens
    Simon DeKeyser
    Toon Verstraelen
    Veronique Van Speybroeck
    npj Computational Materials, 9
  • [26] Machine learning: An accelerator for the exploration and application of advanced metal-organic frameworks
    Du, Ruolin
    Xin, Ruiqi
    Wang, Han
    Zhu, Wenkai
    Li, Rui
    Liu, Wei
    CHEMICAL ENGINEERING JOURNAL, 2024, 490
  • [27] Machine learning assisted predictions for hydrogen storage in metal-organic frameworks
    Salehi, Khashayar
    Rahmani, Mohammad
    Atashrouz, Saeid
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (85) : 33260 - 33275
  • [28] Prediction of water stability of metal-organic frameworks using machine learning
    Batra, Rohit
    Chen, Carmen
    Evans, Tania G.
    Walton, Krista S.
    Ramprasad, Rampi
    NATURE MACHINE INTELLIGENCE, 2020, 2 (11) : 704 - +
  • [29] Analyzing acetylene adsorption of metal-organic frameworks based on machine learning
    Peisong Yang
    Gang Lu
    Qingyuan Yang
    Lei Liu
    Xin Lai
    Duli Yu
    GreenEnergy&Environment, 2022, 7 (05) : 1062 - 1070
  • [30] Analyzing acetylene adsorption of metal-organic frameworks based on machine learning
    Yang, Peisong
    Lu, Gang
    Yang, Qingyuan
    Liu, Lei
    Lai, Xin
    Yu, Duli
    GREEN ENERGY & ENVIRONMENT, 2022, 7 (05) : 1062 - 1070