Discovery of Dual Ion-Electron Conductivity of Metal-Organic Frameworks via Machine Learning-Guided Experimentation

被引:1
|
作者
Bashiri, Robabeh [1 ]
Lawson, Preston S. [1 ]
He, Stewart [2 ]
Nanayakkara, Sadisha [1 ]
Kim, Kwangnam [2 ]
Barnett, Nicholas S. [3 ]
Stavila, Vitalie [4 ]
El Gabaly, Farid [4 ]
Lee, Jaydie [5 ]
Ayars, Eric [6 ]
So, Monica C. [1 ]
机构
[1] Calif State Univ Chico, Dept Chem & Biochem, Chico, CA 95929 USA
[2] Lawrence Livermore Natl Lab, Livermore, CA 95064 USA
[3] Univ Illinois, Dept Phys, Chicago, IL 60607 USA
[4] Sandia Natl Labs, Livermore, CA 94551 USA
[5] Calif State Univ Chico, Coll Nat Sci, Chico, CA 95929 USA
[6] Calif State Univ Chico, Dept Phys, Chico, CA 95929 USA
基金
美国国家科学基金会;
关键词
TRANSPORT; MOF; CHALLENGES;
D O I
10.1021/acs.chemmater.4c02974
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Identifying conductive metal-organic frameworks (MOFs) with a coupled ion-electron behavior from a vast array of existing MOFs offers a cost-effective strategy to tap into their potential in energy storage applications. This study employs classification and regression machine learning (ML) to rapidly screen the CoREMOF database and experimental methodologies to validate ML predictions. This process revealed the structure-property relationships contributing to MOFs' bulk ion-electron conductivity. Among the 60 conductive compounds predicted, only two p-type conductive MOFs, [Cu3(mu 3-OH) (mu 3-C4H2N2O2)3(H3O)]<middle dot>2C2H5OH<middle dot>4H2O (1) and NH4[Cu3(mu 3-OH)(mu 3-C4H2N2O2)3]<middle dot>8H2O or (2) (C4H2N2O = 1H-pyrazole-4-carboxylic acid), were validated for their coupled electron-ion behavior. MOFs utilize earth-abundant copper and pyrazoles as ligands, demonstrating significant potential following thorough electrochemical characterization. Further analysis confirmed the critical role of strong sigma-donating, pi-accepting, and redox-active ligands in promoting electron mobility. In-depth structural investigations revealed that the presence of the O-Cu-N chain significantly influences conductivity, outperforming MOFs with only Cu-N or Cu-O bonds. Additionally, this study highlights how higher ionic conductivity is correlated with the ion mobility through linkers in 1 or the presence of ammonium ions in 2. These structure-property relationships offer valuable insights for future research in using ML coupled with experimentation to design MOFs containing earth-abundant reagents for ion-electron conductivity without employing a host-guest MOF strategy.
引用
收藏
页码:1143 / 1153
页数:11
相关论文
共 50 条
  • [1] Machine learning improves metal-organic frameworks design and discovery
    Tamakloe, Senam
    MRS BULLETIN, 2022, 47 (09) : 886 - 886
  • [2] Examining proton conductivity of metal-organic frameworks by means of machine learning
    Dudakov, Ivan V.
    Savelev, Sergei A.
    Nevolin, Iurii M.
    Mitrofanov, Artem A.
    Korolev, Vadim V.
    Gorbunova, Yulia G.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2025, 27 (14) : 6850 - 6857
  • [3] Accelerating Discovery of Water Stable Metal-Organic Frameworks by Machine Learning
    Zhang, Zhiming
    Pan, Fusheng
    Mohamed, Saad Aldin
    Ji, Chengxin
    Zhang, Kang
    Jiang, Jianwen
    Jiang, Zhongyi
    SMALL, 2024, 20 (42)
  • [4] Machine learning and descriptor selection for the computational discovery of metal-organic frameworks
    Mukherjee, Krishnendu
    Colon, Yamil J.
    MOLECULAR SIMULATION, 2021, 47 (10-11) : 857 - 877
  • [5] Teaching Metal-Organic Frameworks to Conduct: Ion and Electron Transport in Metal-Organic Frameworks
    Kharod, Ruby A.
    Andrews, Justin L.
    Dinc, Mircea
    ANNUAL REVIEW OF MATERIALS RESEARCH, 2022, 52 : 103 - 128
  • [6] Machine Learning-Based Prediction of Proton Conductivity in Metal-Organic Frameworks
    Han, Seunghee
    Lee, Byoung Gwan
    Lim, Dae-Woon
    Kim, Jihan
    CHEMISTRY OF MATERIALS, 2024, 36 (22) : 11280 - 11287
  • [7] From Data to Discovery: Recent Trends of Machine Learning in Metal-Organic Frameworks
    Park, Junkil
    Kim, Honghui
    Kang, Yeonghun
    Lim, Yunsung
    Kim, Jihan
    JACS AU, 2024, 4 (10): : 3727 - 3743
  • [8] Prediction of Metal-Organic Frameworks with Phase Transition via Machine Learning
    Karsakov, Grigory V.
    Shirobokov, Vladimir P.
    Kulakova, Alena
    Milichko, Valentin A.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2024, 15 (11): : 3089 - 3095
  • [9] Machine-Learning-Guided Morphology Engineering of Nanoscale Metal-Organic Frameworks
    Chen, Peican
    Tang, Zeyu
    Zeng, Zhongming
    Hu, Xuefu
    Xiao, Liangping
    Liu, Yi
    Qian, Xudong
    Deng, Chunyu
    Huang, Ruiyun
    Zhang, Jingzheng
    Bi, Yilong
    Lin, Rongkun
    Zhou, Yang
    Liao, Honggang
    Zhou, Da
    Wang, Cheng
    Lin, Wenbin
    MATTER, 2020, 2 (06) : 1651 - 1666
  • [10] Applications of machine learning in metal-organic frameworks
    Chong, Sanggyu
    Lee, Sangwon
    Kim, Baekjun
    Kim, Jihan
    COORDINATION CHEMISTRY REVIEWS, 2020, 423