Context: Machine Learning Software Defect Prediction (ML SDP) is a promising method to improve the quality and minimise the cost of software development. Objective: We aim to: (1) apropose and develop a Lightweight Alternative to SDP (LA2SDP) that predicts test failures induced by software defects to allow pinpointing defective software modules thanks to available mapping of predicted test failures to past defects and corrected modules, (2) preliminary evaluate the proposed method in a real-world Nokia 5G scenario. Method: We train machine learning models using test failures that come from confirmed software defects already available in the Nokia 5G environment. We implement LA2SDP using five supervised ML algorithms, together with their tuned versions, and use eXplainable AI (XAI) to provide feedback to stakeholders and initiate quality improvement actions. Results: We have shown that LA2SDP is feasible in vivo using test failure-to-defect report mapping readily available within the Nokia 5G system-level test process, achieving good predictive performance. Specifically, CatBoost Gradient Boosting turned out to perform the best and achieved satisfactory Matthew's Correlation Coefficient (MCC) results for our feasibility study. Conclusions: Our efforts have successfully defined, developed, and validated LA2SDP, using the sliding and expanding window approaches on an industrial data set.