A Bregman proximal subgradient algorithm for nonconvex and nonsmooth fractional optimization problems

被引:0
|
作者
Long, Xian Jun [1 ,2 ]
Wang, Xiao Ting [1 ]
Li, Gao Xi [1 ]
Li, Geng Hua [1 ]
机构
[1] Chongqing Technol & Business Univ, Sch Math & Stat, Chongqing 400067, Peoples R China
[2] Chongqing Technol & Business Univ, Chongqing Key Lab Stat Intelligent Comp & Monitori, Chongqing 400067, Peoples R China
关键词
Fractional optimization problem; Bregman proximal subgradient algorithm; Relative smooth; Relative weakly convex; Kurdyka-& Lstrok; ojasiewicz property; LIPSCHITZ GRADIENT CONTINUITY; 1ST-ORDER METHODS; CONVERGENCE;
D O I
10.1016/j.apnum.2024.05.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study a class of nonconvex and nonsmooth fractional optimization problem, where the numerator of which is the sum of a nonsmooth and nonconvex function and a relative smooth nonconvex function, while the denominator is relative weakly convex nonsmooth function. We propose a Bregman proximal subgradient algorithm for solving this type of fractional optimization problems. Under moderate conditions, we prove that the subsequence generated by the proposed algorithm converges to a critical point, and the generated sequence globally converges to a critical point when the objective function satisfies the Kurdyka-& Lstrok;ojasiewicz property. We also obtain the convergence rate of the proposed algorithm. Finally, two numerical experiments illustrate the effectiveness and superiority of the algorithm. Our results give a positive answer to an open problem proposed by Bot et al. [14].
引用
收藏
页码:209 / 221
页数:13
相关论文
共 50 条
  • [21] An inexact multiple proximal bundle algorithm for nonsmooth nonconvex multiobjective optimization problems
    N. Hoseini Monjezi
    S. Nobakhtian
    Annals of Operations Research, 2022, 311 : 1123 - 1154
  • [22] An Inertial Tseng’s Type Proximal Algorithm for Nonsmooth and Nonconvex Optimization Problems
    Radu Ioan Boţ
    Ernö Robert Csetnek
    Journal of Optimization Theory and Applications, 2016, 171 : 600 - 616
  • [23] Subgradient-Based Neural Networks for Nonsmooth Nonconvex Optimization Problems
    Bian, Wei
    Xue, Xiaoping
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2009, 20 (06): : 1024 - 1038
  • [24] A PROXIMAL MINIMIZATION ALGORITHM FOR STRUCTURED NONCONVEX AND NONSMOOTH PROBLEMS
    Bot, Radu Ioan
    Csetnek, Erno Robert
    Dang-Khoa Nguyen
    SIAM JOURNAL ON OPTIMIZATION, 2019, 29 (02) : 1300 - 1328
  • [25] An alternating structure-adapted Bregman proximal gradient descent algorithm for constrained nonconvex nonsmooth optimization problems and its inertial variant
    Gao, Xue
    Cai, Xingju
    Wang, Xiangfeng
    Han, Deren
    JOURNAL OF GLOBAL OPTIMIZATION, 2023, 87 (01) : 277 - 300
  • [26] An alternating structure-adapted Bregman proximal gradient descent algorithm for constrained nonconvex nonsmooth optimization problems and its inertial variant
    Xue Gao
    Xingju Cai
    Xiangfeng Wang
    Deren Han
    Journal of Global Optimization, 2023, 87 : 277 - 300
  • [27] Proximal Subgradient Algorithm for a Class of Nonconvex Bilevel Equilibrium Problems
    Thang, Tran Van
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2024, 47 (02)
  • [28] Proximal Subgradient Algorithm for a Class of Nonconvex Bilevel Equilibrium Problems
    Tran Van Thang
    Bulletin of the Malaysian Mathematical Sciences Society, 2024, 47
  • [29] Bregman distance regularization for nonsmooth and nonconvex optimization
    Mashreghi, Zeinab
    Nasri, Mostafa
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2024, 67 (02): : 415 - 424
  • [30] A stochastic two-step inertial Bregman proximal alternating linearized minimization algorithm for nonconvex and nonsmooth problems
    Guo, Chenzheng
    Zhao, Jing
    Dong, Qiao-Li
    arXiv, 2023,