A Bregman proximal subgradient algorithm for nonconvex and nonsmooth fractional optimization problems

被引:0
|
作者
Long, Xian Jun [1 ,2 ]
Wang, Xiao Ting [1 ]
Li, Gao Xi [1 ]
Li, Geng Hua [1 ]
机构
[1] Chongqing Technol & Business Univ, Sch Math & Stat, Chongqing 400067, Peoples R China
[2] Chongqing Technol & Business Univ, Chongqing Key Lab Stat Intelligent Comp & Monitori, Chongqing 400067, Peoples R China
关键词
Fractional optimization problem; Bregman proximal subgradient algorithm; Relative smooth; Relative weakly convex; Kurdyka-& Lstrok; ojasiewicz property; LIPSCHITZ GRADIENT CONTINUITY; 1ST-ORDER METHODS; CONVERGENCE;
D O I
10.1016/j.apnum.2024.05.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study a class of nonconvex and nonsmooth fractional optimization problem, where the numerator of which is the sum of a nonsmooth and nonconvex function and a relative smooth nonconvex function, while the denominator is relative weakly convex nonsmooth function. We propose a Bregman proximal subgradient algorithm for solving this type of fractional optimization problems. Under moderate conditions, we prove that the subsequence generated by the proposed algorithm converges to a critical point, and the generated sequence globally converges to a critical point when the objective function satisfies the Kurdyka-& Lstrok;ojasiewicz property. We also obtain the convergence rate of the proposed algorithm. Finally, two numerical experiments illustrate the effectiveness and superiority of the algorithm. Our results give a positive answer to an open problem proposed by Bot et al. [14].
引用
收藏
页码:209 / 221
页数:13
相关论文
共 50 条
  • [1] A proximal subgradient algorithm with extrapolation for structured nonconvex nonsmooth problems
    Pham, Tan Nhat
    Dao, Minh N. N.
    Shah, Rakibuzzaman
    Sultanova, Nargiz
    Li, Guoyin
    Islam, Syed
    NUMERICAL ALGORITHMS, 2023, 94 (04) : 1763 - 1795
  • [2] A proximal subgradient algorithm with extrapolation for structured nonconvex nonsmooth problems
    Tan Nhat Pham
    Minh N. Dao
    Rakibuzzaman Shah
    Nargiz Sultanova
    Guoyin Li
    Syed Islam
    Numerical Algorithms, 2023, 94 : 1763 - 1795
  • [3] Stochastic subgradient algorithm for nonsmooth nonconvex optimization
    Gulcin Dinc Yalcin
    Journal of Applied Mathematics and Computing, 2024, 70 : 317 - 334
  • [4] Bregman Proximal Gradient Algorithm With Extrapolation for a Class of Nonconvex Nonsmooth Minimization Problems
    Zhang, Xiaoya
    Barrio, Roberto
    Angeles Martinez, M.
    Jiang, Hao
    Cheng, Lizhi
    IEEE ACCESS, 2019, 7 : 126515 - 126529
  • [5] Stochastic subgradient algorithm for nonsmooth nonconvex optimization
    Yalcin, Gulcin Dinc
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2024, 70 (01) : 317 - 334
  • [6] Bregman proximal gradient algorithm with extrapolation for a class of nonconvex nonsmooth minimization problems
    Department of Mathematics, National University of Defense Technology, Changsha, Hunan
    410073, China
    不详
    不详
    410073, China
    arXiv,
  • [7] Extrapolated Proximal Subgradient Algorithms for Nonconvex and Nonsmooth Fractional Programs
    Bot, Radu Ioan
    Dao, Minh N.
    Li, Guoyin
    MATHEMATICS OF OPERATIONS RESEARCH, 2021, 47 (03) : 2415 - 2443
  • [8] An approximate subgradient algorithm for unconstrained nonsmooth, nonconvex optimization
    Adil Bagirov
    Asef Nazari Ganjehlou
    Mathematical Methods of Operations Research, 2008, 67 : 187 - 206
  • [9] Convergence of the proximal bundle algorithm for nonsmooth nonconvex optimization problems
    Monjezi, N. Hoseini
    Nobakhtian, S.
    OPTIMIZATION LETTERS, 2022, 16 (05) : 1495 - 1511
  • [10] Convergence of the proximal bundle algorithm for nonsmooth nonconvex optimization problems
    N. Hoseini Monjezi
    S. Nobakhtian
    Optimization Letters, 2022, 16 : 1495 - 1511