All-Organic Sandwich-Structured Dielectric Films Based on Aramid Nanofibers and Polyimide for High-Temperature Electrical Energy Storage

被引:0
|
作者
Duan, Guangyu [1 ,2 ]
Hu, Fengying [1 ]
Wang, Yabing [1 ]
Shao, Wenxuan [1 ]
Xu, Ruopu [1 ]
Lu, Duo [1 ]
Hu, Zuming [3 ]
机构
[1] Henan Univ Engn, Coll Mat Engn, Zhengzhou 450007, Peoples R China
[2] Henan Univ Engn, Henan Engn Technol Res Ctr Fiber Preparat & Modifi, Zhengzhou 450007, Peoples R China
[3] Donghua Univ, State Key Lab Modificat Chem Fibers & Polymer Mat, Shanghai 201620, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
polymer dielectric film; sandwiched structure; polyimide; aramid nanofiber; high-temperature electricalenergy storage;
D O I
10.1021/acsanm.4c05899
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
To meet the urgent requirements of cutting-edge power electronics and electrical systems at elevated temperatures, all-organic sandwich-structured dielectric films were successfully designed and fabricated based on the aramid nanofiber film (ANFm) and polyimide (PI) layer via the convenient "dipping and pulling" technique. On account of the flat surface and formed electron traps, the PI-ANFm-PI (P-A-P) dielectric films exhibit enhanced breakdown strength (E b) and reduced leakage current density compared to the single-layered ANFm at elevated temperatures. The P-A-P dielectric film shows a maximal discharge energy density (U d) of 3.68 J/cm3 with a charge-discharge efficiency (eta) exceeding 80% at 25 degrees C and an impressive U d of 1.76 J/cm3 with eta above 70% at 150 degrees C, outstandingly surpassing the performances of single-layered ANFm and pure PI dielectric film. With the exceptional energy-storage properties, the all-organic sandwich-structured P-A-P films have been demonstrated to be promising candidates for high-temperature electrical energy storage.
引用
收藏
页码:543 / 551
页数:9
相关论文
共 50 条
  • [21] All-Organic Aramid Films with High Temperature Resistance and Electrical Insulation by Introducing Interfacial Hydrogen Bonds
    Hu, Wen-Jin
    Li, Xin
    Xiang, Jian-Ping
    Sun, De-Xiang
    Zhang, Nan
    Wang, Yong
    Yang, Jing-Hui
    ACS APPLIED MATERIALS & INTERFACES, 2025, 17 (07) : 11334 - 11347
  • [22] Excellent high-temperature dielectric energy storage of flexible all-organic polyetherimide/poly(arylene ether urea) polymer blend films
    Ding, Song
    Bao, Zhiwei
    Wang, Yiwei
    Dai, Zhizhan
    Jia, Jiangheng
    Shen, Shengchun
    Yin, Yuewei
    Li, Xiaoguang
    JOURNAL OF POWER SOURCES, 2023, 570
  • [23] High-temperature all-organic energy storage dielectric with the performance of self-adjusting electric field distribution
    Liu, Guang
    Feng, Yu
    Zhang, Tiandong
    Zhang, Changhai
    Chi, Qingguo
    Zhang, Yongquan
    Zhang, Yue
    Lei, Qingquan
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (30) : 16384 - 16394
  • [24] Sandwich-structured polymer dielectric composite films for improving breakdown strength and energy density at high temperature
    Zhang, Tianran
    Sun, Qinzhao
    Kang, Fang
    Wang, Zepeng
    Xue, Rong
    Wang, Jiping
    Zhang, Lixue
    COMPOSITES SCIENCE AND TECHNOLOGY, 2022, 227
  • [25] Enhancing high-temperature energy storage in all-organic composites through the polyfluorine effect
    Wang, Jian
    Zheng, Yingying
    Peng, Biyun
    Zhang, Yifei
    Gong, Honghong
    Liang, Sen
    Zhou, Wenying
    Xie, Yunchuan
    JOURNAL OF ENERGY STORAGE, 2025, 112
  • [26] Significantly Improved Dielectric Performance of All-Organic Parylene/Polyimide/Parylene Composite Films with Sandwich Structure
    Ahmad, Aftab
    Liu, Guanghui
    Cao, Shimo
    Liu, Xuepeng
    Luo, Jinpeng
    Han, Li
    Tong, Hui
    Xu, Ju
    MACROMOLECULAR RAPID COMMUNICATIONS, 2023, 44 (02)
  • [27] Annealing and Stretching Induced High Energy Storage Properties in All-Organic Composite Dielectric Films
    Feng, Yefeng
    Peng, Cheng
    Deng, Qihuang
    Li, Yandong
    Hu, Jianbing
    Wu, Qin
    MATERIALS, 2018, 11 (11):
  • [28] Tri-layer high-temperature all-organic films with superior energy-storage density and thermal stability
    Chen, Jie
    Wang, Pansong
    Wang, Zhen
    Zhang, Xiaoyong
    Chen, Weixing
    Wang, Yifei
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (02) : 1106 - 1114
  • [29] Scalable polyolefin-based all-organic dielectrics with superior high-temperature capacitive energy storage performance
    Zhou, Yao
    Chen, Yuhan
    Cui, Yuxin
    Li, Yanzhi
    Li, Zhiyuan
    Zhou, Changwu
    Cheng, Lu
    Liu, Wenfeng
    ENERGY STORAGE MATERIALS, 2024, 72
  • [30] All-organic nanocomposite dielectrics contained with polymer dots for high-temperature capacitive energy storage
    Jiale Ding
    Wenhan Xu
    Xuanbo Zhu
    Zheng Liu
    Yunhe Zhang
    Zhenhua Jiang
    Nano Research, 2023, 16 : 10183 - 10190