Graph Contrastive Learning with Reinforcement Augmentation

被引:0
|
作者
Liu, Ziyang [1 ]
Wang, Chaokun [1 ]
Wu, Cheng [1 ]
机构
[1] Tsinghua Univ, Sch Software, BNRist, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Graph contrastive learning (GCL), designing contrastive objectives to learn embeddings from augmented graphs, has become a prevailing method for extracting embeddings from graphs in an unsupervised manner. As an important procedure in GCL, graph data augmentation (GDA) directly affects the model performance on downstream tasks. Currently, the GCL methods typically treat GDA as independent events, neglecting its continuity. In this paper, we regard the GDA in GCL as a Markov decision process and propose a novel graph reinforcement augmentation framework for GCL. Based on this framework, we design a Graph Advantage ActorCritic (GA2C) model. We conduct extensive experiments to evaluate GA2C on unsupervised learning, transfer learning, and semi-supervised learning. The experimental results demonstrate the performance superiority of GA2C over the state-of-the-art GCL models. Furthermore, we verify that GA2C is more efficient than the other GCL methods with learnable GDA and provide two examples of chemical molecular graphs from ZINC-2M to demonstrate that GA2C generates meaningful augmented views, where the edge weights reflect the importance of chemical bonds in the molecule.
引用
收藏
页码:2225 / 2233
页数:9
相关论文
共 50 条
  • [21] Multi-relational graph contrastive learning with learnable graph augmentation
    Mo, Xian
    Pang, Jun
    Wan, Binyuan
    Tang, Rui
    Liu, Hao
    Jiang, Shuyu
    NEURAL NETWORKS, 2025, 181
  • [22] Adaptive graph contrastive learning with joint optimization of data augmentation and graph encoder
    Zhenpeng Wu
    Jiamin Chen
    Raeed Al-Sabri
    Babatounde Moctard Oloulade
    Jianliang Gao
    Knowledge and Information Systems, 2024, 66 : 1657 - 1681
  • [23] Encoder augmentation for multi-task graph contrastive learning
    Wang, Xiaoyu
    Zhang, Qiqi
    Liu, Gen
    Zhao, Zhongying
    Cui, Hongzhi
    NEUROCOMPUTING, 2025, 630
  • [24] Graph contrastive learning networks with augmentation for legal judgment prediction
    Dong, Yao
    Li, Xinran
    Shi, Jin
    Dong, Yongfeng
    Chen, Chen
    ARTIFICIAL INTELLIGENCE AND LAW, 2024,
  • [25] Adaptive graph contrastive learning with joint optimization of data augmentation and graph encoder
    Wu, Zhenpeng
    Chen, Jiamin
    Al-Sabri, Raeed
    Oloulade, Babatounde Moctard
    Gao, Jianliang
    KNOWLEDGE AND INFORMATION SYSTEMS, 2024, 66 (03) : 1657 - 1681
  • [26] Unsupervised Graph Transformer With Augmentation-Free Contrastive Learning
    Zhao, Han
    Yang, Xu
    Wei, Kun
    Deng, Cheng
    Tao, Dacheng
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (11) : 7296 - 7307
  • [27] A Unique Framework of Heterogeneous Augmentation Graph Contrastive Learning for Both Node and Graph Classification
    Shao, Qi
    Chen, Duxin
    Yu, Wenwu
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2024, 11 (06): : 5818 - 5828
  • [28] Semi-Supervised Graph Contrastive Learning With Virtual Adversarial Augmentation
    Dong, Yixiang
    Luo, Minnan
    Li, Jundong
    Liu, Ziqi
    Zheng, Qinghua
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (08) : 4232 - 4244
  • [29] COSTA: Covariance-Preserving Feature Augmentation for Graph Contrastive Learning
    Zhang, Yifei
    Zhu, Hao
    Song, Zixing
    Koniusz, Piotr
    King, Irwin
    PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 2524 - 2534
  • [30] Influence-Guided Data Augmentation in Graph Contrastive Learning for Recommendation
    Zhang, Qi
    Xi, Heran
    Zhu, Jinghua
    SERVICE-ORIENTED COMPUTING, ICSOC 2023, PT II, 2023, 14420 : 91 - 99