Enhancing the heart failure survival prediction by using artificial intelligence

被引:0
|
作者
Ayesha [1 ]
Farooq, Muhammad [2 ]
机构
[1] Univ Lahore, Lahore Business Sch, Lahore, Pakistan
[2] COMSATS Univ, Dept Stat, Islamabad, Pakistan
关键词
Deep learning models; Heart failure; Heart patients; Survival analysis; MACHINE;
D O I
10.1080/03610918.2025.2459295
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Heart failure is a widespread cardiovascular ailment posing a significant threat to global health with an estimated 17.9 million annual fatalities. This study focuses on 299 patients with advanced heart failure (classified as III/IV) and left ventricular systolic dysfunction. Our examination involves assessing the concordance index for model evaluation. To augment our predictive capacities, we proposed a DS-NN. This model was compared against the random survival forest, gradient boosting, gradient boosting least square and the Cox proportional hazard model. Notably, DS-NN showcased superior prowess compared to the other five models with concordance index values of 0.73 and 0.72 for the training and testing sets, respectively. This implies that incorporating deep learning into survival prediction holds promise for more accuracy and offering clinicians' valuable insights for treatment decisions. This ultimately leads to improved survival outcomes and the avoidance of unnecessary interventions.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Prediction of heart failure decompensations using artificial intelligence techniques
    Escolar Perez, V. Vanessa
    Lozano, A.
    Larburu, N.
    Kerexeta, J.
    Artetxe, A.
    Artola, G.
    Alvarez, R.
    Juez, B.
    Echebarria, A.
    Azcona, A.
    EUROPEAN JOURNAL OF HEART FAILURE, 2019, 21 : 220 - 220
  • [2] Improvement of a prediction model for heart failure survival through explainable artificial intelligence
    Moreno-Sanchez, Pedro A.
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2023, 10
  • [3] Enhanced survival prediction using explainable artificial intelligence in heart transplantation
    Paulo J. G. Lisboa
    Manoj Jayabalan
    Sandra Ortega-Martorell
    Ivan Olier
    Dennis Medved
    Johan Nilsson
    Scientific Reports, 12
  • [4] Enhanced survival prediction using explainable artificial intelligence in heart transplantation
    Lisboa, Paulo J. G.
    Jayabalan, Manoj
    Ortega-Martorell, Sandra
    Olier, Ivan
    Medved, Dennis
    Nilsson, Johan
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [5] Prediction of congestive heart failure in patients using artificial intelligence: proof of concept
    Pana, M.
    Vasilescu, E. I.
    Busnatu, S. S.
    Andrei, C.
    Popescu, N. A.
    Sinescu, C. J.
    EUROPEAN HEART JOURNAL, 2021, 42 : 2547 - 2547
  • [6] ECG BIOMARKER USING ARTIFICIAL INTELLIGENCE FOR THE OUTCOME PREDICTION IN PATIENTS WITH ACUTE HEART FAILURE
    Cho, Youngjin
    Yoon, Minjae
    Lee, Ji Hyun
    Oh, Il-Young
    Park, Jin Joo
    Kim, Joonghee
    Choi, Dong-Ju
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2023, 81 (08) : 2151 - 2151
  • [7] Heart Failure Diagnosis, Readmission, and Mortality Prediction Using Machine Learning and Artificial Intelligence Models
    Guo, Aixia
    Pasque, Michael
    Loh, Francis
    Mann, Douglas L.
    Payne, Philip R. O.
    CURRENT EPIDEMIOLOGY REPORTS, 2020, 7 (04) : 212 - 219
  • [8] HEART FAILURE RISK PREDICTION USING ARTIFICIAL INTELLIGENCE ON ECG PHOTOS IN LARGE CONTEMPORARY COHORT
    Dhingra, Lovedeep
    Sangha, Veer
    Aminorroaya, Arya
    Camargos, Aline Fernandes Pedroso
    Oikonomou, Evangelos K.
    Khera, Rohan
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2024, 83 (13) : 277 - 277
  • [9] Heart Failure Diagnosis, Readmission, and Mortality Prediction Using Machine Learning and Artificial Intelligence Models
    Aixia Guo
    Michael Pasque
    Francis Loh
    Douglas L. Mann
    Philip R. O. Payne
    Current Epidemiology Reports, 2020, 7 : 212 - 219
  • [10] ARTIFICIAL INTELLIGENCE APPLIED TO ECG IMPROVES HEART FAILURE PREDICTION ACCURACY
    Akbilgic, Oguz
    Butler, Liam
    Karabayir, Ibrahim
    Chang, Patricia
    Kitzman, Dalane
    Alonso, Alvaro
    Chen, Lin
    Soliman, Elsayed
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2021, 77 (18) : 3045 - 3045