Aluminum sulfate surface treatment enabling long cycle life and low voltage decay lithium-rich manganese based oxide cathode

被引:0
|
作者
Zhou, Kun [1 ,3 ]
Zhang, Zhenjie [1 ,4 ]
Cao, Bowei [1 ,3 ]
Jiao, Sichen [2 ,4 ]
Zhu, Jiacheng [4 ]
Xu, Xilin [2 ,4 ]
Chen, Penghao [1 ,3 ]
Xiong, Xinyun [1 ,3 ]
Xu, Lei [2 ]
Wang, Qiyu [1 ,2 ]
Wang, Xuefeng [1 ]
Yu, Xiqian [1 ,2 ,4 ]
Li, Hong [1 ,2 ,4 ]
机构
[1] Chinese Acad Sci, Inst Phys, Natl Lab Condensed Matter Phys, Beijing 100049, Peoples R China
[2] Chinese Acad Sci, Inst Phys, Beijing Frontier Res Ctr Clean Energy, Huairou Div, Beijing 100049, Peoples R China
[3] Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100049, Peoples R China
[4] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-rich manganese-based layered oxide; Cobalt-free; Oxygen redox; Surface treatment; Voltage decay; OXYGEN VACANCIES; REDOX; EVOLUTION; FADE;
D O I
10.1016/j.nanoen.2024.110639
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium-rich manganese-based cathode materials (LRMs) represent promising candidates for high-energy-density lithium-ion batteries. Nevertheless, the significant voltage decay and inferior cycle performance resulting from irreversible oxygen redox processes have impeded the commercialization of LRMs. In this study, we demonstrate that surface aluminum doping, in situ formation of spinel structures, and amorphous lithium sulfate coatings can enhance lithium-ion diffusion and mitigate irreversible oxygen loss through a straightforward aluminum sulfate treatment applied to cobalt-free LRMs. The modified LRMs demonstrate a capacity retention of 93.8 % and a voltage decay rate of 0.28 mV per cycle after 500 cycles. Additionally, the modified LRMs achieve a first discharge-specific energy density of 1016 Wh/kg (based on active materials), which is comparable to that of cobalt-containing LRMs (Li1.2Ni0.1Co0.13Mn0.54O2) while offering superior energy density retention. This enhanced performance can be primarily attributed to increased reversible oxygen redox processes and reduced structural reorganization following prolonged cycling. This study presents a robust strategy for the synthesis of high-energy, high-stability cobalt-free LRMs tailored for advanced lithium-ion battery applications.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Suppressing the voltage decay of lithium-rich cathode for Li-Ion batteries via Pt nanoparticles surface modification
    Liu, Yanying
    Li, Jianling
    Yang, Zhe
    Zhong, Jianjian
    Yu, Yang
    Kang, Feiyu
    CERAMICS INTERNATIONAL, 2020, 46 (17) : 26564 - 26571
  • [22] Mitigating the capacity and voltage decay of lithium-rich layered oxide cathodes by fabricating Ni/Mn graded surface
    Li, Feng
    Wang, Yangyang
    Gao, Shilun
    Hou, Peiyu
    Zhang, Lianqi
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (47) : 24758 - 24766
  • [23] Reasons and modification strategies of low initial coulombic efficiency of lithium-rich manganese-based cathode materials
    Zhang J.
    Cai X.
    Zhou J.
    Ding H.
    Zhang N.
    Cui X.
    Jingxi Huagong/Fine Chemicals, 2024, 41 (06): : 1211 - 1220
  • [24] Effect of pristine nanostructure on first cycle electrochemical characteristics of lithium-rich lithium-nickel-cobalt-manganese-oxide cathode ceramics for lithium ion batteries
    Riekehr, Lars
    Liu, Jinlong
    Schwarz, Bjoern
    Sigel, Florian
    Kerkamm, Ingo
    Xia, Yongyao
    Ehrenberg, Helmut
    JOURNAL OF POWER SOURCES, 2016, 306 : 135 - 147
  • [25] Enabling Long Cycle Life and High Rate Iron Difluoride Based Lithium Batteries by In Situ Cathode Surface Modification
    Su, Yong
    Chen, Jingzhao
    Li, Hui
    Sun, Haiming
    Yang, Tingting
    Liu, Qiunan
    Ichikawa, Satoshi
    Zhang, Xuedong
    Zhu, Dingding
    Zhao, Jun
    Geng, Lin
    Guo, Baiyu
    Du, Congcong
    Dai, Qiushi
    Wang, Zaifa
    Li, Xiaomei
    Ye, Hongjun
    Guo, Yunna
    Li, Yanshuai
    Yao, Jingming
    Yan, Jitong
    Luo, Yang
    Qiu, Hailong
    Tang, Yongfu
    Zhang, Liqiang
    Huang, Qiao
    Huang, Jianyu
    ADVANCED SCIENCE, 2022, 9 (21)
  • [26] Stable surface lattice for prolonged cycle life of single-crystal lithium-rich layered oxide cathodes
    Duan, Jidong
    Wang, Fengqi
    Li, Shaomin
    Yang, Maoxia
    Huang, Mengjia
    Zhang, Gen
    Tang, Changyu
    Liu, Hao
    CHEMICAL ENGINEERING JOURNAL, 2024, 489
  • [27] Modification of suitable electrolytes for high-voltage lithium-rich manganese-based cathode with wide-temperature range
    Long Zhang
    Xi Dong
    Yutong Wang
    Xin Wang
    Chunxia Wang
    Tiantian Cao
    Jiawei Wen
    Guoyong Huang
    Journal of Materials Science: Materials in Electronics, 2023, 34
  • [28] Modification of suitable electrolytes for high-voltage lithium-rich manganese-based cathode with wide-temperature range
    Zhang, Long
    Dong, Xi
    Wang, Yutong
    Wang, Xin
    Wang, Chunxia
    Cao, Tiantian
    Wen, Jiawei
    Huang, Guoyong
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2023, 34 (19)
  • [29] Effect of Manganese Vanadate Formed on the Surface of Spinel Lithium Manganese Oxide Cathode on High Temperature Cycle Life Performance
    Kim, Jun-Il
    Park, Sun-Min
    Roh, Kwang Chul
    Lee, Jae-Won
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2013, 34 (09): : 2573 - 2576
  • [30] Countering Voltage Decay, Redox Sluggishness, and Calendering Incompatibility by Near-Zero-Strain Interphase in Lithium-Rich, Manganese-Based Layered Oxide Electrodes
    He, Weitao
    Zhang, Chunxiao
    Wang, Meiyu
    Wei, Bo
    Zhu, Yuelei
    Wu, Jianghua
    Liang, Chaoping
    Chen, Libao
    Wang, Peng
    Wei, Weifeng
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (29)