VDMNet: A Deep Learning Framework with Vessel Dynamic Convolution and Multi-Scale Fusion for Retinal Vessel Segmentation

被引:0
|
作者
Xu, Guiwen [1 ]
Hu, Tao [2 ]
Zhang, Qinghua [1 ]
机构
[1] Huazhong Univ Sci & Technol, Union Shenzhen Hosp, Dept Neurosurg, Shenzhen 518052, Peoples R China
[2] Fudan Univ, Sch Informat Sci & Technol, Shanghai 200433, Peoples R China
来源
BIOENGINEERING-BASEL | 2024年 / 11卷 / 12期
基金
中国国家自然科学基金;
关键词
retinal vessel segmentation; microvasculature structure; vessel dynamic convolution; multi-scale fusion;
D O I
10.3390/bioengineering11121190
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Retinal vessel segmentation is crucial for diagnosing and monitoring ophthalmic and systemic diseases. Optical Coherence Tomography Angiography (OCTA) enables detailed imaging of the retinal microvasculature, but existing methods for OCTA segmentation face significant limitations, such as susceptibility to noise, difficulty in handling class imbalance, and challenges in accurately segmenting complex vascular morphologies. In this study, we propose VDMNet, a novel segmentation network designed to overcome these challenges by integrating several advanced components. Firstly, we introduce the Fast Multi-Head Self-Attention (FastMHSA) module to effectively capture both global and local features, enhancing the network's robustness against complex backgrounds and pathological interference. Secondly, the Vessel Dynamic Convolution (VDConv) module is designed to dynamically adapt to curved and crossing vessels, thereby improving the segmentation of complex morphologies. Furthermore, we employ the Multi-Scale Fusion (MSF) mechanism to aggregate features across multiple scales, enhancing the detection of fine vessels while maintaining vascular continuity. Finally, we propose Weighted Asymmetric Focal Tversky Loss (WAFT Loss) to address class imbalance issues, focusing on the accurate segmentation of small and difficult-to-detect vessels. The proposed framework was evaluated on the publicly available ROSE-1 and OCTA-3M datasets. Experimental results demonstrated that our model effectively preserved the edge information of tiny vessels and achieved state-of-the-art performance in retinal vessel segmentation across several evaluation metrics. These improvements highlight VDMNet's superior ability to capture both fine vascular details and overall vessel connectivity, making it a robust solution for retinal vessel segmentation.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] MULTI-SCALE APPROACH FOR RETINAL VESSEL SEGMENTATION USING MEDIALNESS FUNCTION
    Moghimirad, Elahe
    Rezatofighi, Seyed Hamid
    Soltanian-Zadeh, Hamid
    2010 7TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, 2010, : 29 - 32
  • [22] RETINAL VESSEL SEGMENTATION VIA A SEMANTICS AND MULTI-SCALE AGGREGATION NETWORK
    Xu, Rui
    Ye, Xinchen
    Jiang, Guiliang
    Liu, Tiantian
    Li, Liang
    Tanaka, Satoshi
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 1085 - 1089
  • [23] Retinal vessel segmentation using an improved multi-scale line detection
    Gao, Xiangjun
    INTERNATIONAL JOURNAL OF BIOMEDICAL ENGINEERING AND TECHNOLOGY, 2013, 13 (03) : 240 - 256
  • [24] RETINAL VESSEL SEGMENTATION WITH VAE RECONSTRUCTION AND MULTI-SCALE CONTEXT EXTRACTOR
    Xu, Weijin
    Yang, Huihua
    Zhang, Mingying
    Pan, Xipeng
    Liu, Wentao
    Yan, Songlin
    2022 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (IEEE ISBI 2022), 2022,
  • [25] Retinal Blood Vessel Segmentation Method Based on Multi-scale Convolution Kernel U-Net Model
    Yang D.
    Liu G.-R.
    Ren M.-C.
    Pei H.-Y.
    Dongbei Daxue Xuebao/Journal of Northeastern University, 2021, 42 (01): : 7 - 14
  • [26] Dynamic Deep Networks for Retinal Vessel Segmentation
    Khanal, Aashis
    Estrada, Rolando
    FRONTIERS IN COMPUTER SCIENCE, 2020, 2
  • [27] A multi-scale feature extraction and fusion-based model for retinal vessel segmentation in fundus images
    Zhou, Jinzhi
    Ma, Guangcen
    He, Haoyang
    Li, Saifeng
    Zhang, Guopeng
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2025, 63 (02) : 595 - 608
  • [28] MCFSA-Net: A multi-scale channel fusion and spatial activation network for retinal vessel segmentation
    Li, Rui
    Li, Zuoyong
    Fan, Haoyi
    Teng, Shenghua
    Cao, Xinrong
    JOURNAL OF BIOPHOTONICS, 2023, 16 (04)
  • [29] Gabor-net with multi-scale hierarchical fusion of features for fundus retinal blood vessel segmentation
    Fang, Tao
    Cai, Zhefei
    Fan, Yingle
    BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2024, 44 (02) : 402 - 413
  • [30] AMF-NET: Attention-aware Multi-scale Fusion Network for Retinal Vessel Segmentation
    Yang, Qi
    Ma, Bingqi
    Cui, Hui
    Ma, Jiquan
    2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 3277 - 3280