Strike a Balance in Continual Panoptic Segmentation

被引:0
|
作者
Chen, Jinpeng [1 ]
Cong, Runmin [2 ,3 ]
Luo, Yuxuan [1 ]
Ip, Horace Ho Shing [1 ,4 ]
Kwong, Sam [5 ]
机构
[1] City Univ Hong Kong, Dept Comp Sci, Kowloon, Hong Kong, Peoples R China
[2] Shandong Univ, Sch Control Sci & Engn, Jinan, Shandong, Peoples R China
[3] Minist Educ, Key Lab Machine Intelligence & Syst Control, Jinan, Shandong, Peoples R China
[4] City Univ Hong Kong, Ctr Innovat Applicat Internet & Multimedia Techno, Kowloon, Hong Kong, Peoples R China
[5] Lingnan Univ, Then Mun, Hong Kong, Peoples R China
来源
COMPUTER VISION - ECCV 2024, PT XLI | 2025年 / 15099卷
关键词
Continual panoptic segmentation; Continual semantic segmentation; Continual learning;
D O I
10.1007/978-3-031-72940-9_8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This study explores the emerging area of continual panoptic segmentation, highlighting three key balances. First, we introduce pastclass backtrace distillation to balance the stability of existing knowledge with the adaptability to new information. This technique retraces the features associated with past classes based on the final label assignment results, performing knowledge distillation targeting these specific features from the previous model while allowing other features to flexibly adapt to new information. Additionally, we introduce a class-proportional memory strategy, which aligns the class distribution in the replay sample set with that of the historical training data. This strategy maintains a balanced class representation during replay, enhancing the utility of the limited-capacity replay sample set in recalling prior classes. Moreover, recognizing that replay samples are annotated only for the classes of their original step, we devise balanced anti-misguidance losses, which combat the impact of incomplete annotations without incurring classification bias. Building upon these innovations, we present a new method named Balanced Continual Panoptic Segmentation (BalConpas). Our evaluation on the challenging ADE20K dataset demonstrates its superior performance compared to existing state-of-the-art methods. The official code is available at https://github.com/jinpeng0528/BalConpas.
引用
收藏
页码:126 / 142
页数:17
相关论文
共 50 条
  • [31] Depth-Aware Panoptic Segmentation
    Tuan Nguyen
    Mehltretter, Max
    Rottensteiner, Franz
    ISPRS ANNALS OF THE PHOTOGRAMMETRY, REMOTE SENSING AND SPATIAL INFORMATION SCIENCES: VOLUME X-2-2024, 2024, : 153 - 161
  • [32] Lidar Panoptic Segmentation in an Open World
    Chakravarthy, Anirudh S.
    Ganesina, Meghana Reddy
    Hu, Peiyun
    Leal-Taixe, Laura
    Kong, Shu
    Ramanan, Deva
    Osep, Aljosa
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2025, 133 (03) : 1153 - 1174
  • [33] Unifying Training and Inference for Panoptic Segmentation
    Li, Qizhu
    Qi, Xiaojuan
    Torr, Philip H. S.
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, : 13317 - 13325
  • [34] Panoptic Out-of-Distribution Segmentation
    Mohan, Rohit
    Kumaraswamy, Kiran
    Hurtado, Juana Valeria
    Petek, Kursat
    Valada, Abhinav
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (05) : 4075 - 4082
  • [35] Panoptic Nuscenes: A Large-Scale Benchmark for LiDAR Panoptic Segmentation and Tracking
    Fong, Whye Kit
    Mohan, Rohit
    Hurtado, Juana Valeria
    Zhou, Lubing
    Caesar, Holger
    Beijbom, Oscar
    Valada, Abhinav
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (02) : 3795 - 3802
  • [36] Panoptic-SLAM: Visual SLAM in Dynamic Environments using Panoptic Segmentation
    Abati, Gahriel Fischer
    Soares, Joao Carlos Virgolino
    Medeiros, Vivian Suzano
    Meggiolaro, Marco Antonio
    Semini, Claudio
    2024 21ST INTERNATIONAL CONFERENCE ON UBIQUITOUS ROBOTS, UR 2024, 2024, : 762 - 769
  • [37] ChaInNet: Deep Chain Instance Segmentation Network for Panoptic Segmentation
    Lin Mao
    Fengzhi Ren
    Dawei Yang
    Rubo Zhang
    Neural Processing Letters, 2023, 55 : 615 - 630
  • [38] ChaInNet: Deep Chain Instance Segmentation Network for Panoptic Segmentation
    Mao, Lin
    Ren, Fengzhi
    Yang, Dawei
    Zhang, Rubo
    NEURAL PROCESSING LETTERS, 2023, 55 (01) : 615 - 630
  • [39] Panoptic-PolarNet: Proposal-free LiDAR Point Cloud Panoptic Segmentation
    Zhou, Zixiang
    Zhang, Yang
    Foroosh, Hassan
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 13189 - 13198
  • [40] Panoptic-PartFormer plus plus : A Unified and Decoupled View for Panoptic Part Segmentation
    Li, Xiangtai
    Xu, Shilin
    Yang, Yibo
    Yuan, Haobo
    Cheng, Guangliang
    Tong, Yunhai
    Lin, Zhouchen
    Yang, Ming-Hsuan
    Tao, Dacheng
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (12) : 11087 - 11103