Two-Order Superconvergent CDG Finite Element Method for the Heat Equation on Triangular and Tetrahedral Meshes

被引:0
|
作者
Ye, Xiu [1 ]
Zhang, Shangyou [2 ]
机构
[1] Univ Arkansas Little Rock, Dept Math, Little Rock, AR 72204 USA
[2] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
关键词
Parabolic equations; Finite element; Conforming discontinuous Galerkin (CDG); Triangular mesh; Tetrahedral mesh; Primary; WEAK GALERKIN METHOD; STOKES EQUATIONS; STABILIZER-FREE; TIME; ROBUST;
D O I
10.1007/s42967-024-00444-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we introduce a conforming discontinuous Galerkin (CDG) finite element method for solving the heat equation. Unlike the rest of discontinuous Galerkin (DG) methods, the numerical-flux {del uh<middle dot>n}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\nabla u_h\cdot \textbf{n}\}$$\end{document} is not introduced to the computation in the CDG method. Additionally, the numerical-trace {uh}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{ u_h \}$$\end{document} is not the average (uh|T1+uh|T2)/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(u_h|_{T_1} +u_h|_{T_2})/2$$\end{document} (or some other simple average used in other DG methods), but a lifted Pk+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{k+1}$$\end{document} polynomial from the Pk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_k$$\end{document} solution uh\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_h$$\end{document} on nearby four triangles in 2D, or eight tetrahedra in 3D. We show a two-order superconvergence in space approximation when using the CDG method with a backward Euler time discretization, on triangular and tetrahedral meshes, for solving the heat equation. Numerical tests are reported which confirm the theory.
引用
收藏
页数:16
相关论文
共 50 条