3D auto-segmentation of vascular structures and hepatic sectional parenchyme of living liver donors using computed tomographic angiography: a deep learning model for automatic 3D volumetry

被引:0
|
作者
Rhu, J. [1 ]
Choi, G. -S. [1 ]
Kim, J. M. [1 ]
Joh, J. -W. [1 ]
Lee, E. [1 ]
Ryu, Y. J. [1 ]
Baek, J. Y. [1 ]
机构
[1] Sungkyunkwan Univ, Sch Med, Dept Surg, Seoul, South Korea
关键词
D O I
暂无
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
O-062
引用
收藏
页码:65 / 65
页数:1
相关论文
共 50 条
  • [41] Multiphase Computed Tomographic Angiography with Bone Subtraction Using 3D Multichannel Convolution Neural Networks
    Huang, Adam
    Cheng, Wen-Hsiang
    Lee, Chung-Wei
    Yang, Chung-Yi
    Liu, Hon-Man
    42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20, 2020, : 1274 - 1277
  • [42] Fully Automatic Liver Volumetry Using 3D Level Set Segmentation for Differentiated Liver Tissue Types in Multiple Contrast MR Datasets
    Gloger, Oliver
    Toennies, Klaus
    Kuehn, Jens-Peter
    IMAGE ANALYSIS: 17TH SCANDINAVIAN CONFERENCE, SCIA 2011, 2011, 6688 : 512 - 523
  • [43] Automatic forensic identification using 3D sphenoid sinus segmentation and deep characterization
    Souadih, Kamal
    Belaid, Ahror
    Ben Salem, Douraied
    Conze, Pierre-Henri
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2020, 58 (02) : 291 - 306
  • [44] Automatic forensic identification using 3D sphenoid sinus segmentation and deep characterization
    Kamal Souadih
    Ahror Belaid
    Douraied Ben Salem
    Pierre-Henri Conze
    Medical & Biological Engineering & Computing, 2020, 58 : 291 - 306
  • [45] A generative flow-based model for volumetric data augmentation in 3D deep learning for computed tomographic colonography
    Uemura, Tomoki
    Nappi, Janne J.
    Ryu, Yasuji
    Watari, Chinatsu
    Kamiya, Tohru
    Yoshida, Hiroyuki
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2021, 16 (01) : 81 - 89
  • [46] A generative flow-based model for volumetric data augmentation in 3D deep learning for computed tomographic colonography
    Tomoki Uemura
    Janne J. Näppi
    Yasuji Ryu
    Chinatsu Watari
    Tohru Kamiya
    Hiroyuki Yoshida
    International Journal of Computer Assisted Radiology and Surgery, 2021, 16 : 81 - 89
  • [47] SaltSeg: Automatic 3D salt segmentation using a deep convolutional neural network
    Shi, Yunzhi
    Wu, Xinming
    Fomel, Sergey
    INTERPRETATION-A JOURNAL OF SUBSURFACE CHARACTERIZATION, 2019, 7 (03): : SE113 - SE122
  • [48] Automatic Segmentation in 3D CT Images: A Comparative Study of Deep Learning Architectures for the Automatic Segmentation of the Abdominal Aorta
    Mavridis, Christos
    Vagenas, Theodoros P.
    Economopoulos, Theodore L.
    Vezakis, Ioannis
    Petropoulou, Ourania
    Kakkos, Ioannis
    Matsopoulos, George K.
    ELECTRONICS, 2024, 13 (24):
  • [49] Automatic segmentation of tumors and affected organs in the abdomen using a 3D hybrid model for computed tomography imaging
    Qayyum, Abdul
    Lalande, Alain
    Meriaudeau, Fabrice
    COMPUTERS IN BIOLOGY AND MEDICINE, 2020, 127 (127)
  • [50] Reliability of hepatic artery configuration in 3D CT angiography compared with conventional angiography - special reference to living-related liver transplant donors
    Sakai, H
    Okuda, K
    Yasunaga, M
    Kinoshita, H
    Aoyagi, S
    TRANSPLANT INTERNATIONAL, 2005, 18 (05) : 499 - 505