Robust Boundary Stabilization of Stochastic Hyperbolic PDEs

被引:0
|
作者
Zhang, Yihuai [1 ]
Auriol, Jean [3 ]
Yu, Huan [1 ,2 ]
机构
[1] Hong Kong Univ Sci & Technol Guangzhou, Thrust Intelligent Transportat, Guangzhou 511400, Peoples R China
[2] Hong Kong Univ Sci & Technol, Dept Civil & Environm Engn, Hong Kong, Peoples R China
[3] Univ Paris Saclay, CNRS, Cent Supelec, Lab Signaux & Syst, Gif Sur Yvette, France
来源
2024 AMERICAN CONTROL CONFERENCE, ACC 2024 | 2024年
关键词
STABILITY; SYSTEMS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a backstepping boundary control design for robust stabilization of linear first-order coupled hyperbolic partial differential equations (PDEs) with Markov-jumping parameters. The PDE system consists of 4 x 4 coupled hyperbolic PDEs whose first three characteristic speeds are positive and the last one is negative. We first design a full-state feedback boundary control law for a nominal, deterministic system using the backstepping method. Then, by applying Lyapunov analysis methods, we prove that the nominal backstepping control law can stabilize the PDE system with Markov jumping parameters if the nominal parameters are sufficiently close to the stochastic ones on average. The mean-square exponential stability conditions are theoretically derived and then validated via numerical simulations.
引用
收藏
页码:5333 / 5338
页数:6
相关论文
共 50 条
  • [21] Exponential stabilization of a class of 1-D hyperbolic PDEs
    Elharfi, Abdelhadi
    JOURNAL OF EVOLUTION EQUATIONS, 2016, 16 (03) : 665 - 679
  • [22] Exponential stabilization of a class of 1-D hyperbolic PDEs
    Abdelhadi Elharfi
    Journal of Evolution Equations, 2016, 16 : 665 - 679
  • [23] ADAPTIVE OUTPUT FEEDBACK STABILIZATION OF n plus m COUPLED LINEAR HYPERBOLIC PDEs WITH UNCERTAIN BOUNDARY CONDITIONS
    Anfinsen, Henrik
    Aamo, Ole Morten
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2017, 55 (06) : 3928 - 3946
  • [24] Stabilization of Stochastic Fluctuations in Hyperbolic Systems
    Gerster, Stephan
    IFAC PAPERSONLINE, 2020, 53 (02): : 7223 - 7227
  • [25] Boundary Stabilization of Hyperbolic Hemivariational Inequalities
    Sun Hye Park
    Jong Yeoul Park
    Jin Mun Jeong
    Acta Applicandae Mathematicae, 2008, 104 : 139 - 150
  • [26] Boundary stabilization of hyperbolic hemivariational inequalities
    Park, Sun Hye
    Park, Jong Yeoul
    Jeong, Jin Mun
    ACTA APPLICANDAE MATHEMATICAE, 2008, 104 (02) : 139 - 150
  • [27] Boundary Parameter and State Estimation in General Linear Hyperbolic PDEs
    Anfinsen, Henrik
    Diagne, Mamadon
    Aamo, Ole Morten
    Krstic, Miroslav
    IFAC PAPERSONLINE, 2016, 49 (08): : 104 - 110
  • [28] Iterative algorithm for parabolic and hyperbolic PDEs with nonlocal boundary conditions
    Al-Zaid, N. A.
    Bakodah, H. O.
    JOURNAL OF OCEAN ENGINEERING AND SCIENCE, 2018, 3 (04) : 316 - 324
  • [29] Variance reduction through robust design of boundary conditions for stochastic hyperbolic systems of equations
    Nordstrom, Jan
    Wahlsten, Markus
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 282 : 1 - 22
  • [30] Chaotic dynamics of linear hyperbolic PDEs with nonlinear boundary conditions
    Xiang, Qiaomin
    Yin, Zongbin
    Zhu, Pengxian
    CHAOS SOLITONS & FRACTALS, 2020, 131