Transformer-Based Models for Probabilistic Time Series Forecasting with Explanatory Variables

被引:0
|
作者
Caetano, Ricardo [1 ]
Oliveira, Jose Manuel [2 ,3 ]
Ramos, Patricia [2 ,4 ]
机构
[1] Polytech Porto, ISCAP, Rua Jaime Lopes Amorim S-N, P-4465004 Sao Mamede De Infesta, Portugal
[2] Inst Syst & Comp Engn Technol & Sci, Campus FEUP,Rua Dr Roberto Frias, P-4200465 Porto, Portugal
[3] Univ Porto, Fac Econ, Rua Dr Roberto Frias, P-4200464 Porto, Portugal
[4] Polytech Porto, CEOS PP, ISCAP, Rua Jaime Lopes Amorim S-N, P-4465004 Sao Mamede De Infesta, Portugal
关键词
transformers; time series; probabilistic forecasting; retail; covariates; deep learning; data-driven decision making; SALES; FASHION;
D O I
10.3390/math13050814
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Accurate demand forecasting is essential for retail operations as it directly impacts supply chain efficiency, inventory management, and financial performance. However, forecasting retail time series presents significant challenges due to their irregular patterns, hierarchical structures, and strong dependence on external factors such as promotions, pricing strategies, and socio-economic conditions. This study evaluates the effectiveness of Transformer-based architectures, specifically Vanilla Transformer, Informer, Autoformer, ETSformer, NSTransformer, and Reformer, for probabilistic time series forecasting in retail. A key focus is the integration of explanatory variables, such as calendar-related indicators, selling prices, and socio-economic factors, which play a crucial role in capturing demand fluctuations. This study assesses how incorporating these variables enhances forecast accuracy, addressing a research gap in the comprehensive evaluation of explanatory variables within multiple Transformer-based models. Empirical results, based on the M5 dataset, show that incorporating explanatory variables generally improves forecasting performance. Models leveraging these variables achieve up to 12.4% reduction in Normalized Root Mean Squared Error (NRMSE) and 2.9% improvement in Mean Absolute Scaled Error (MASE) compared to models that rely solely on past sales. Furthermore, probabilistic forecasting enhances decision making by quantifying uncertainty, providing more reliable demand predictions for risk management. These findings underscore the effectiveness of Transformer-based models in retail forecasting and emphasize the importance of integrating domain-specific explanatory variables to achieve more accurate, context-aware predictions in dynamic retail environments.
引用
收藏
页数:29
相关论文
共 50 条
  • [21] AGCNT: Adaptive Graph Convolutional Network for Transformer-based Long Sequence Time-Series Forecasting
    Su, Hongyang
    Wang, Xiaolong
    Qin, Yang
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 3439 - 3442
  • [22] Transformer-based probabilistic forecasting of daily hotel demand using web search behavior
    Rojas, Cristof
    Jatowt, Adam
    KNOWLEDGE-BASED SYSTEMS, 2025, 310
  • [23] A Transformer-based Framework for Multivariate Time Series Representation Learning
    Zerveas, George
    Jayaraman, Srideepika
    Patel, Dhaval
    Bhamidipaty, Anuradha
    Eickhoff, Carsten
    KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 2114 - 2124
  • [24] Adversarial Transformer-Based Anomaly Detection for Multivariate Time Series
    Yu, Xinying
    Zhang, Kejun
    Liu, Yaqi
    Zou, Bing
    Wang, Jun
    Wang, Wenbin
    Qian, Rong
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2025, 21 (03) : 2471 - 2480
  • [25] A hierarchical transformer-based network for multivariate time series classification
    Tang, Yingxia
    Wei, Yanxuan
    Li, Teng
    Zheng, Xiangwei
    Ji, Cun
    INFORMATION SYSTEMS, 2025, 132
  • [26] Transformer-Based Time-Series Forecasting for Telemetry Data in an Environmental Control and Life Support System of Spacecraft
    Song, Bin
    Guo, Boyu
    Hu, Wei
    Zhang, Zhen
    Zhang, Nan
    Bao, Junpeng
    Wang, Jianji
    Xin, Jingmin
    ELECTRONICS, 2025, 14 (03):
  • [27] Probabilistic load forecasting for integrated energy systems based on quantile regression patch time series Transformer
    Zhang, Wei
    Zhan, Hongyi
    Sun, Hang
    Yang, Mao
    ENERGY REPORTS, 2025, 13 : 303 - 317
  • [28] Transformer-Based Model for Electrical Load Forecasting
    L'Heureux, Alexandra
    Grolinger, Katarina
    Capretz, Miriam A. M.
    ENERGIES, 2022, 15 (14)
  • [29] A transformer-based framework for enterprise sales forecasting
    Sun, Yupeng
    Li, Tian
    PEERJ COMPUTER SCIENCE, 2024, 10 : 1 - 14
  • [30] Interpretable transformer-based model for probabilistic short-term forecasting of residential net load
    Xu, Chongchong
    Chen, Guo
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2024, 155