Stabilizer Tensor Networks: Universal Quantum Simulator on a Basis of Stabilizer States

被引:2
|
作者
Masot-Llima, Sergi [1 ,2 ]
Garcia-Saez, Artur [1 ,3 ]
机构
[1] Barcelona Supercomp Ctr, Barcelona 08034, Spain
[2] Univ Barcelona, Barcelona 08007, Spain
[3] Qilimanjaro Quantum Tech, Barcelona 08019, Spain
关键词
ENTANGLEMENT;
D O I
10.1103/PhysRevLett.133.230601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Efficient simulation of quantum computers relies on understanding and exploiting the properties of quantum states. This is the case for methods such as tensor networks, based on entanglement, and the tableau formalism, which represents stabilizer states. In this Letter, we integrate these two approaches to present a generalization of the tableau formalism used for Clifford circuit simulation. We explicitly prove how to update our formalism with Clifford gates, non-Clifford gates, and measurements, enabling universal circuit simulation. We also discuss how the framework allows for efficient simulation of more states, raising some interesting questions on the representation power of tensor networks and the quantum properties of resources such as entanglement and magic, and support our claims with simulations.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Stabilizer entropy of quantum tetrahedra
    Cepollaro, Simone
    Chirco, Goffredo
    Cuffaro, Gianluca
    Esposito, Gianluca
    Hamma, Alioscia
    PHYSICAL REVIEW D, 2024, 109 (12)
  • [22] Nonbinary quantum stabilizer codes
    Ashikhmin, A
    Knill, E
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (07) : 3065 - 3072
  • [23] Validating and certifying stabilizer states
    Kalev, Amir
    Kyrillidis, Anastasios
    Linke, Norbert M.
    PHYSICAL REVIEW A, 2019, 99 (04)
  • [24] Entropic lens on stabilizer states
    Keeler, Cynthia
    Munizzi, William
    Pollack, Jason
    PHYSICAL REVIEW A, 2022, 106 (06)
  • [25] Homological invariants of stabilizer states
    Wirthmueller, Klaus
    QUANTUM INFORMATION & COMPUTATION, 2008, 8 (6-7) : 595 - 621
  • [26] Optimal verification of stabilizer states
    Dangniam, Ninnat
    Han, Yun-Guang
    Zhu, Huangjun
    PHYSICAL REVIEW RESEARCH, 2020, 2 (04):
  • [27] Clifford orbits and stabilizer states
    Feng, Lingxuan
    Luo, Shunlong
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (39)
  • [28] Typical entanglement of stabilizer states
    Smith, Graeme
    Leung, Debbie
    PHYSICAL REVIEW A, 2006, 74 (06):
  • [29] Symmetries and entanglement of stabilizer states
    Englbrecht, Matthias
    Kraus, Barbara
    PHYSICAL REVIEW A, 2020, 101 (06)
  • [30] Stabilizer dimension of graph states
    Zhang, D. H.
    Fan, H.
    Zhou, D. L.
    PHYSICAL REVIEW A, 2009, 79 (04):