Impact of the observation frequency coverage on the significance of a gravitational wave background detection in pulsar timing array data

被引:0
|
作者
Ferranti, I. [1 ,2 ]
Falxa, M. [1 ]
Sesana, A. [1 ,2 ,3 ]
Chalumeau, A. [4 ]
Porayko, N. [5 ]
Shaifullah, G. [1 ,2 ,3 ]
Cognard, I. [6 ,7 ]
Guillemot, L. [6 ,7 ]
Kramer, M. [5 ]
Liu, K. [5 ,8 ]
Theureau, G. [6 ,7 ,9 ]
机构
[1] Univ Milano Bicocca, Dipartimento Fis G Occhialini, Piazza Sci 3, I-20126 Milan, Italy
[2] Sez Milano Bicocca, INFN, Piazza Sci 3, I-20126 Milan, Italy
[3] INAF Osservatorio Astron Brera, Via Brera 20, I-20121 Milan, Italy
[4] Netherlands Inst Radio Astron, ASTRON, Oude Hoogeveensedijk 4, NL-7991 PD Dwingeloo, Netherlands
[5] Max Planck Inst Radioastron, Hugel 69, DE-53121 Bonn, Germany
[6] Univ Orleans, CNES, CNRS, LPC2E, F-45071 Orleans, France
[7] Univ Orleans, Univ PSL, Observ Radioastron Nancay, Observ Paris,CNRS, F-18330 Nancay, France
[8] Chinese Acad Sci, Shanghai Astron Observ, 80 Nandan Rd, Shanghai 200030, Peoples R China
[9] PSL Res Univ, Univ Paris Diderot, Sorbonne Paris Cite, LUTH, F-92195 Meudon, France
关键词
gravitational waves; methods: data analysis; pulsars: general; PRECISION; SENSITIVITY; RADIATION; ARRIVAL; SEARCH; LIMITS; NOISE; TIME;
D O I
10.1051/0004-6361/202452805
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Pulsar timing srray (PTA) collaborations gather high-precision timing measurements of pulsars, with the aim of detecting gravitational wave (GW) signals. A major challenge lies in the identification and characterisation of the different sources of noise that may hamper their sensitivity to GWs. The presence of time-correlated noise that resembles the target signal might give rise to degeneracies that can directly impact the detection statistics. In this work, we focus on the covariance that exists between a 'chromatic' dispersion measure (DM) noise and an 'achromatic' stochastic gravitational wave background (GWB). The term 'chromatic' associated with the DM noise means that its amplitude depends on the frequency of the incoming pulsar photons measured by the radio telescopes. Multi-frequency coverage is then required to accurately characterise its chromatic features and when the coverage of incoming frequency is poor, it becomes impossible to disentangle chromatic and achromatic noise contributions. In this paper, we explore this situation by injecting realistic GWB into 100 realisations of two mock versions of the second data release (DR2) of the European PTA (EPTA), characterised by different types of frequency coverage. The first dataset is a faithful copy of DR2, in which the first half of the data is dominated by only one frequency channel for the observations; the second one is identical, except for a more homogeneous frequency coverage across the full dataset. We show that for 91% of the injections, a better frequency coverage leads to an improved statistical significance (approximate to 1.3 dex higher log Bayes factor on average) of the GWB and a better characterisation of its properties. We propose a metric to quantify the degeneracy between DM and GWB parameters. We show that it is correlated with a loss of significance for the recovered GWB, as well as with an increase in the GWB bias towards a higher and flatter spectral shape. In the second part of the paper, this correlation between the loss of GWB significance, the degeneracy between the DM and GWB parameters, and the frequency coverage is further investigated using an analytical toy model.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Machine learning for nanohertz gravitational wave detection and parameter estimation with pulsar timing array
    Chen, MengNi
    Zhong, YuanHong
    Feng, Yi
    Li, Di
    Li, Jin
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2020, 63 (12)
  • [42] Machine learning for nanohertz gravitational wave detection and parameter estimation with pulsar timing array
    MengNi Chen
    YuanHong Zhong
    Yi Feng
    Di Li
    Jin Li
    Science China(Physics,Mechanics & Astronomy), 2020, (12) : 96 - 105
  • [43] Prospects of Gravitational Wave Detection Using Pulsar Timing Array for Chinese Future Telescopes
    Lee, K. J.
    FRONTIERS IN RADIO ASTRONOMY 2015, 2016, 502 : 19 - 24
  • [44] Machine learning for nanohertz gravitational wave detection and parameter estimation with pulsar timing array
    MengNi Chen
    YuanHong Zhong
    Yi Feng
    Di Li
    Jin Li
    Science China Physics, Mechanics & Astronomy, 2020, 63
  • [45] Axion-like universal gravitational wave interpretation of pulsar timing array data
    Lozanov, Kaloian D.
    Pi, Shi
    Sasaki, Misao
    Takhistov, Volodymyr
    Wang, Ao
    CLASSICAL AND QUANTUM GRAVITY, 2025, 42 (03)
  • [46] Gravitational wave astronomy of single sources with a pulsar timing array
    Lee, K. J.
    Wex, N.
    Kramer, M.
    Stappers, B. W.
    Bassa, C. G.
    Janssen, G. H.
    Karuppusamy, R.
    Smits, R.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2011, 414 (04) : 3251 - 3264
  • [47] Cosmological Background Interpretation of Pulsar Timing Array Data
    Figueroa, Daniel G.
    Pieroni, Mauro
    Ricciardone, Angelo
    Simakachorn, Peera
    PHYSICAL REVIEW LETTERS, 2024, 132 (17)
  • [48] PRACTICAL METHODS FOR CONTINUOUS GRAVITATIONAL WAVE DETECTION USING PULSAR TIMING DATA
    Ellis, J. A.
    Jenet, F. A.
    McLaughlin, M. A.
    ASTROPHYSICAL JOURNAL, 2012, 753 (02):
  • [49] Pulsar timing arrays: the promise of gravitational wave detection
    Lommen, Andrea N.
    REPORTS ON PROGRESS IN PHYSICS, 2015, 78 (12)
  • [50] Noise analysis in the European Pulsar Timing Array data release 2 and its implications on the gravitational-wave background search
    Chalumeau, A.
    Babak, S.
    Petiteau, A.
    Chen, S.
    Samajdar, A.
    Caballero, R. N.
    Theureau, G.
    Guillemot, L.
    Desvignes, G.
    Parthasarathy, A.
    Liu, K.
    Shaifullah, G.
    Hu, H.
    van der Wateren, E.
    Antoniadis, J.
    Nielsen, A. -S. Bak
    Bassa, C. G.
    Berthereau, A.
    Burgay, M.
    Champion, D. J.
    Cognard, I.
    Falxa, M.
    Ferdman, R. D.
    Freire, P. C. C.
    Gair, J. R.
    Graikou, E.
    Guo, Y. J.
    Jang, J.
    Janssen, G. H.
    Karuppusamy, R.
    Keith, M. J.
    Kramer, M.
    Lee, K. J.
    Liu, X. J.
    Lyne, A. G.
    Main, R. A.
    McKee, J. W.
    Mickaliger, M. B.
    Perera, B. B. P.
    Perrodin, D.
    Porayko, N. K.
    Possenti, A.
    Sanidas, S. A.
    Sesana, A.
    Speri, L.
    Stappers, B. W.
    Tiburzi, C.
    Vecchio, A.
    Verbiest, J. P. W.
    Wang, J.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 509 (04) : 5538 - 5558