A Methodological Framework for AI-Driven Textual Data Analysis in Digital Media

被引:0
|
作者
Cordeiro, Douglas [1 ]
Lopezosa, Carlos [2 ]
Guallar, Javier [2 ]
机构
[1] Univ Fed Goias, Fac Informat & Commun, BR-74690900 Goiania, Go, Brazil
[2] Univ Barcelona, Fac Informat & Audiovisual Media, Barcelona 08193, Spain
关键词
digital media; natural language processing (NLP); text analysis; sentiment analysis; artificial intelligence; statistics; NEWS;
D O I
10.3390/fi17020059
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The growing volume of textual data generated on digital media platforms presents significant challenges for the analysis and interpretation of information. This article proposes a methodological approach that combines artificial intelligence (AI) techniques and statistical methods to explore and analyze textual data from digital media. The framework, titled DAFIM (Data Analysis Framework for Information and Media), includes strategies for data collection through APIs and web scraping, textual data processing, and data enrichment using AI solutions, including named entity recognition (people, locations, objects, and brands) and the detection of clickbait in news. Sentiment analysis and text clustering techniques are integrated to support content analysis. The potential applications of this methodology include social networks, news aggregators, news portals, and newsletters, offering a robust framework for studying digital data and supporting informed decision-making. The proposed framework is validated through a case study involving data extracted from the Google News aggregation platform, focusing on the Israel-Lebanon conflict. This demonstrates the framework's capability to uncover narrative patterns, content trends, and clickbait detection while also highlighting its advantages and limitations.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] AI-driven harmonization and curation of data for alcohol researchers
    Eslami, M.
    Verbitsky, A.
    Weston, M.
    Salem, N.
    Ferguson, L.
    Warden, A.
    Mayfield, R. D.
    ALCOHOL-CLINICAL AND EXPERIMENTAL RESEARCH, 2023, 47 : 251 - 252
  • [22] Navigating the future of health care with AI-driven digital therapeutics
    Vasdev, Nupur
    Gupta, Tanisha
    Pawar, Bhakti
    Bain, Anoothi
    Tekade, Rakesh Kumar
    DRUG DISCOVERY TODAY, 2024, 29 (09)
  • [23] AVA: An automated and AI-driven intelligent visual analytics framework
    Wang, Jiazhe
    Li, Xi
    Li, Chenlu
    Peng, Di
    Wang, Arran Zeyu
    Gu, Yuhui
    Lai, Xingui
    Zhang, Haifeng
    Xu, Xinyue
    Dong, Xiaoqing
    Lin, Zhifeng
    Zhou, Jiehui
    Liu, Xingyu
    Chen, Wei
    VISUAL INFORMATICS, 2024, 8 (02): : 106 - 114
  • [24] AI-driven framework to map the brain metabolome in three dimensions
    Ma, Xin
    Shedlock, Cameron J.
    Medina, Terrymar
    Ribas, Roberto A.
    Clarke, Harrison A.
    Hawkinson, Tara R.
    Dande, Praveen K.
    Golamari, Hari K. R.
    Wu, Lei
    Ziani, Borhane E. C.
    Burke, Sara N.
    Merritt, Matthew E.
    Vander Kooi, Craig W.
    Gentry, Matthew S.
    Yadav, Nirbhay N.
    Chen, Li
    Sun, Ramon C.
    NATURE METABOLISM, 2025,
  • [25] An AI-Driven Framework for Detecting Bone Fractures in Orthopedic Therapy
    Murrad, Bakir Ghanem
    Mohsin, Abdulhadi Nadhim
    Al-Obaidi, R. H.
    Albaaji, Ghassan Faisal
    Ali, Ahmed Adnan
    Hamzah, Mohamed Sachit
    Abdulridha, Reham Najem
    Al-Sharifi, Haitham K. R.
    ACS BIOMATERIALS SCIENCE & ENGINEERING, 2024, 11 (01): : 577 - 585
  • [26] AI-Driven Framework for Enhanced and Automated Behavioral Analysis in Morris Water Maze Studies
    Lakatos, Istvan
    Bogacsovics, Gergo
    Tiba, Attila
    Priksz, Daniel
    Juhasz, Bela
    Erdelyi, Rita
    Berenyi, Zsuzsa
    Bacskay, Ildiko
    Ujvarosy, Dora
    Harangi, Balazs
    SENSORS, 2025, 25 (05)
  • [27] Data and AI-driven synthetic binding protein discovery
    Li, Yanlin
    Duan, Zixin
    Li, Zhenwen
    Xue, Weiwei
    TRENDS IN PHARMACOLOGICAL SCIENCES, 2025, 46 (02) : 132 - 144
  • [28] AI-Driven Digital Process Twin via Networked Digital Process Chain
    Huang, Ziqi
    Xi, Tiandong
    Fey, Marcel
    Brecher, Christian
    2022 IEEE INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, INTL CONF ON CLOUD AND BIG DATA COMPUTING, INTL CONF ON CYBER SCIENCE AND TECHNOLOGY CONGRESS (DASC/PICOM/CBDCOM/CYBERSCITECH), 2022, : 866 - 871
  • [29] The Impact of Data Acquisition Inconsistency and Time Sensitivity on Digital Twin for AI-Driven Optical Networks
    Zhu, Kangqi
    Hua, Nan
    Li, Yanhe
    Zheng, Xiaoping
    Zhou, Bingkun
    2021 OPTOELECTRONICS GLOBAL CONFERENCE (OGC 2021), 2021, : 225 - 226
  • [30] AI and data-driven media analysis of TV content for optimised digital content marketing
    Nixon, Lyndon
    Apostolidis, Konstantinos
    Apostolidis, Evlampios
    Galanopoulos, Damianos
    Mezaris, Vasileios
    Philipp, Basil
    Bocyte, Rasa
    MULTIMEDIA SYSTEMS, 2024, 30 (01)