Machine Learning-Based Multilevel Intrusion Detection Approach

被引:0
|
作者
Ling, Jiasheng [1 ]
Zhang, Lei [1 ]
Liu, Chenyang [1 ]
Xia, Guoxin [1 ]
Zhang, Zhenxiong [1 ]
机构
[1] Hebei Univ Technol, Sch Artifificial Intelligence & Data Sci, Tianjin 300401, Peoples R China
来源
ELECTRONICS | 2025年 / 14卷 / 02期
关键词
industrial control systems; multilevel-based model; graph attention; multi-head attention; ANOMALY DETECTION; SYSTEM;
D O I
10.3390/electronics14020323
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose a multilevel-based intrusion detection model. Firstly, we design an integrated shared feature technique, which filters the features to create a general dataset, retaining fewer but more significant features to enhance the detection accuracy of the model and reduce computational costs. The first stage employs OC-SVM to achieve the efficient classification of normal and abnormal traffic based on a general dataset. Additionally, the first stage is deployed close to the monitored system to enable low-latency prediction and privacy-preserving operations, thus enhancing flexibility and improving global classification performance. The second stage proposes a novel Edge Attention Network (EGAT) with a Multi-Head Dynamic Mechanism (MHD) framework, which introduces the graph attention mechanism and considers edge information as the only element, assigning greater weights to nodes and edges exhibiting high similarity, emphasizing their relationships and thereby improving the model's accuracy and expressiveness. The MHDEGAT model facilitates additional weight learning by integrating the multi-head attention mechanism with edge features, while the weighted aggregation process enhances the data utilization across different network traffic. Finally, the model is trained and tested using the method of on-network data from a gas industrial control system, with an accuracy of 96.99%, a precision of 97.11%, a recall of 96.99%, and an F1 score of 96.93%, all of which outperform the comparison method.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Internet of Things: A survey on machine learning-based intrusion detection approaches
    da Costa, Kelton A. P.
    Papa, Joao P.
    Lisboa, Celso O.
    Munoz, Roberto
    de Albuquerque, Victor Hugo C.
    COMPUTER NETWORKS, 2019, 151 : 147 - 157
  • [22] Automatic Evasion of Machine Learning-Based Network Intrusion Detection Systems
    Yan, Haonan
    Li, Xiaoguang
    Zhang, Wenjing
    Wang, Rui
    Li, Hui
    Zhao, Xingwen
    Li, Fenghua
    Lin, Xiaodong
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2024, 21 (01) : 153 - 167
  • [23] Design and Performance Evaluation of a Machine Learning-Based Method for Intrusion Detection
    Zhang, Qinglei
    Hu, Gongzhu
    Feng, Wenying
    SOFTWARE ENGINEERING, ARTIFICIAL INTELLIGENCE, NETWORKING AND PARALLEL-DISTRIBUTED COMPUTING 2010, 2010, 295 : 69 - +
  • [24] Intrusion Detection System: A Comparative Study of Machine Learning-Based IDS
    Singh, Amit
    Prakash, Jay
    Kumar, Gaurav
    Jain, Praphula Kumar
    Ambati, Loknath Sai
    JOURNAL OF DATABASE MANAGEMENT, 2024, 35 (01)
  • [25] Effective intrusion detection model through the combination of a signature-based intrusion detection system and a machine learning-based intrusion detection system
    Weon, Ill-Young
    Song, Doo Heon
    Lee, Chang-Hoon
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2006, 22 (06) : 1447 - 1464
  • [26] A Machine learning based intrusion detection approach for industrial networks
    Qiao, Hanli
    Blech, Jan Olaf
    Chen, Huazhou
    2020 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), 2020, : 265 - 270
  • [27] An Agile Approach to Identify Single and Hybrid Normalization for Enhancing Machine Learning-Based Network Intrusion Detection
    Siddiqi, Murtaza Ahmed
    Pak, Wooguil
    IEEE ACCESS, 2021, 9 : 137494 - 137513
  • [28] Machine Learning-Based Approach for Fake News Detection
    Gururaj H.L.
    Lakshmi H.
    Soundarya B.C.
    Flammini F.
    Janhavi V.
    Journal of ICT Standardization, 2022, 10 (04): : 509 - 530
  • [29] Phishing Attacks Detection A Machine Learning-Based Approach
    Salahdine, Fatima
    El Mrabet, Zakaria
    Kaabouch, Naima
    2021 IEEE 12TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2021, : 250 - 255
  • [30] Deep Learning-based Intrusion Detection Approach for Autonomous Electric Vehicles
    Ramoliya, Fenil
    Darji, Krisha
    Trivedi, Chinmay
    Gupta, Rajesh
    Kakkar, Riya
    Tanwar, Sudeep
    Agrawal, Smita
    2024 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS, ICC WORKSHOPS 2024, 2024, : 1828 - 1833