Multi Classification of Pest using Transfer Learning

被引:0
|
作者
Muthallib, Shaik Abdul [1 ]
Rao, Kotha Narasimha [1 ]
Shobanadevi, A. [1 ]
机构
[1] SRM Inst Sci & Technol, Sch Comp, Chennai, Tamil Nadu, India
关键词
Mobilenet; Relu; Maxpooling; 2D; Flatten; Sequential; Image data generator;
D O I
10.1109/ICPCSN62568.2024.00120
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The integration of machine learning and deep learning algorithms such as K-means, SVM, ResNet, and VGGNet signifies a significant advancement in agricultural development. Accurate and precise pest identification is crucial for farmers facing challenges in pest management. This paper adopts the MobileNet architecture to enhance pest classification accuracy. Leveraging a dataset containing 19 distinct pest classes enables the algorithm to train across diverse pest categories, facilitating efficient classification. By incorporating MobileNet, the model improves its ability to accurately identify pests, thereby providing farmers with a valuable tool for effective pest management and crop protection.
引用
收藏
页码:719 / 723
页数:5
相关论文
共 50 条
  • [21] Automated lepidopteran pest developmental stages classification via transfer learning framework
    Qin, Wei-bo
    Abbas, Arzlan
    Abbas, Sohail
    Alam, Aleena
    Chen, De-hui
    Hafeez, Faisal
    Ali, Jamin
    Romano, Donato
    Chen, Ri-Zhao
    ENVIRONMENTAL ENTOMOLOGY, 2024, 53 (06) : 1062 - 1077
  • [22] Transfer learning using a multi-scale and multi-network ensemble for skin lesion classification
    Mahbod, Amirreza
    Schaefer, Gerald
    Wang, Chunliang
    Dorffner, Georg
    Ecker, Rupert
    Ellinger, Isabella
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2020, 193
  • [23] Multi-kernel Transfer Extreme Learning Classification
    Li, Xiaodong
    Mao, Weijie
    Jiang, Wei
    Yao, Ye
    PROCEEDINGS OF ELM-2016, 2018, 9 : 159 - 170
  • [24] UNSUPERVISED TRANSFER LEARNING USING FOR MULTI-MODEL REMOTE SENSING DATA CLASSIFICATION
    Liu, Wei
    Qin, Rongjun
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 636 - 639
  • [25] Multi Oral Disease Classification from Panoramic Radiograph using Transfer Learning and XGBoost
    Jaiswal, Priyanka
    Katkar, Vijay
    Bhirud, S. G.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (12) : 239 - 249
  • [26] Medulloblastoma Tumor Classification using Deep Transfer Learning with Multi-Scale EfficientNets
    Bengs, Marcel
    Bockmayr, Michael
    Schueller, Ulrich
    Schlaefer, Alexander
    MEDICAL IMAGING 2021 - DIGITAL PATHOLOGY, 2021, 11603
  • [27] Automated Multi-Class Facial Syndrome Classification Using Transfer Learning Techniques
    Sherif, Fayroz F.
    Tawfik, Nahed
    Mousa, Doaa
    Abdallah, Mohamed S.
    Cho, Young-Im
    BIOENGINEERING-BASEL, 2024, 11 (08):
  • [28] Multi-Class Classification of Dementia from MRI Images Using Transfer Learning
    Jha, Anshul
    John, Eugene
    Banerjee, Taposh
    2022 IEEE 13TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2022, : 597 - 602
  • [29] Advanced multi-class deep learning convolution neural network approach for insect pest classification using TensorFlow
    Rimal, K.
    Shah, K. B.
    Jha, A. K.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2023, 20 (04) : 4003 - 4016
  • [30] Skin lesion classification using transfer learning
    Nivedhitha, G.
    Kalpana, P.
    Sidthik, A. Sheik
    Rani, V. Anusha
    Singh, Ajith B.
    Rajagopal, R.
    Soft Computing, 2024, 28 (20) : 12337 - 12343