Energy-Conserving Hermite Methods for Maxwell's Equations

被引:0
|
作者
Appelo, Daniel [1 ]
Hagstrom, Thomas [2 ]
Law, Yann-Meing [3 ]
机构
[1] Virginia Tech, Dept Math, Blacksburg, VA 24060 USA
[2] Southern Methodist Univ, Dept Math, Dallas, TX 75275 USA
[3] Polytech Montreal, Dept Math & Ind Engn, Quebec City, PQ H3C 3A7, Canada
基金
美国国家科学基金会;
关键词
Maxwell's equations; High-order methods; Hermite methods; FINITE-DIFFERENCE; MODEL; SCHEMES;
D O I
10.1007/s42967-024-00469-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Energy-conserving Hermite methods for solving Maxwell's equations in dielectric and dispersive media are described and analyzed. In three space dimensions, methods of order 2m to 2m+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2m+2$$\end{document} require (m+1)3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(m+1)<^>3$$\end{document} degrees-of-freedom per node for each field variable and can be explicitly marched in time with steps independent of m. We prove the stability for time steps limited only by domain-of-dependence requirements along with error estimates in a special semi-norm associated with the interpolation process. Numerical experiments are presented which demonstrate that Hermite methods of very high order enable the efficient simulation of the electromagnetic wave propagation over thousands of wavelengths.
引用
收藏
页码:1146 / 1173
页数:28
相关论文
共 50 条
  • [41] ENERGY-CONSERVING PLASMA SIMULATION ALGORITHMS
    LANGDON, AB
    JOURNAL OF COMPUTATIONAL PHYSICS, 1973, 12 (02) : 247 - 268
  • [42] Energy-conserving finite-difference schemes for quasi-hydrostatic equations
    Tort, Marine
    Dubos, Thomas
    Melvin, Thomas
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2015, 141 (693) : 3056 - 3075
  • [43] The energy-conserving property of the standard PE
    Lee, Ding
    Shang, Er-Chang
    THEORETICAL AND COMPUTATIONAL ACOUSTICS 2005, 2006, : 119 - +
  • [44] PROTON MOVEMENTS IN ENERGY-CONSERVING MEMBRANES
    VANDAM, K
    WIECHMANN, AHCA
    HELLINGWERF, KJ
    BIOCHEMICAL SOCIETY TRANSACTIONS, 1977, 5 (02) : 485 - 487
  • [45] Arbitrarily high-order explicit energy-conserving methods for the generalized nonlinear fractional Schrödinger wave equations
    Liu, Yang
    Ran, Maohua
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2024, 216 : 126 - 144
  • [46] Optimal energy-conserving discontinuous Galerkin methods for linear symmetric hyperbolic systems
    Fu, Guosheng
    Shu, Chi-Wang
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 394 : 329 - 363
  • [47] Energy-conserved splitting FDTD methods for Maxwell’s equations
    Wenbin Chen
    Xingjie Li
    Dong Liang
    Numerische Mathematik, 2008, 108 : 445 - 485
  • [48] Energy-conserved splitting FDTD methods for Maxwell's equations
    Chen, Wenbin
    Li, Xingjie
    Liang, Dong
    NUMERISCHE MATHEMATIK, 2008, 108 (03) : 445 - 485
  • [49] Highly efficient energy-conserving moment method for the multi-dimensional Vlasov-Maxwell system
    Yin, Tianai
    Zhong, Xinghui
    Wang, Yanli
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 475
  • [50] Wind energy utilizing on the basis of the building energy-conserving
    Li Li
    Xue Xiangdong
    Proceedings of the China Association for Science and Technology, Vol 2, No 1, 2006, : 214 - 220