Spall response and microstructure evolution of additively manufactured AlSi10Mg alloy with different states

被引:2
|
作者
Shi, Tongya [1 ]
Nan, Xiaolong [2 ]
Ma, Cunqiang [3 ]
Wang, Xiaofeng [1 ]
Hu, Jianbo [2 ]
Wang, Yonggang [1 ]
机构
[1] Ningbo Univ, Key Lab Impact & Safety Engn, Minist Educ, Ningbo 315211, Zhejiang, Peoples R China
[2] CAEP, Inst Fluid Phys, Natl Key Lab Shock Wave & Detonat Phys, Mianyang 621999, Sichuan, Peoples R China
[3] Land Space Technol Corp Ltd, Beijing 100023, Peoples R China
基金
美国国家科学基金会;
关键词
Additive manufacturing; AlSi10Mg alloy; Spall; Microstructure; Texture; DYNAMIC-MECHANICAL BEHAVIOR; STRAIN-RATE; TENSILE PROPERTIES; HEAT-TREATMENT; LASER; PROPERTY; FAILURE; TEXTURE; STRESS;
D O I
10.1016/j.addma.2024.104588
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The spall response and microstructure evolution of additively manufactured AlSi10Mg alloy with different states were investigated systematically through plate impact experiments, microstructure and texture characterization and quasi-static tensile tests. The results show that the microstructure, texture and spall response are related to the impact velocity and material state. Before deformation and fracture failure occur, the as-built and annealed specimens possess the same < 001 > texture along the building direction; the former consists of numerous networks, columnar grains and fine equiaxed grains, and the latter is comprised of coarser grain structure and coarse particles. For both the as-built and annealed specimens, as the impact velocity increases, the Hugoniot elastic limit (HEL) stress and spall strength are slightly affected by the impact velocity; however, the peak shock stress tends to increase. Under the same impact velocity conditions, compared with the as-built specimen, the annealed specimen corresponds to a similar peak shock stress but a lower Hugoniot elastic limit stress and spall strength. Independent of the material state, as the impact velocity increases, the damage gradually increases, namely, from incipient spall to complete spall; the grain structure, including size and shape changes; and the texture remains almost unchanged. Under the same impact velocity conditions, compared with the as-built specimen, the annealed specimen has a coarser grain structure and a similar texture. Voids tend to nucleate at grain boundaries (at the bottom of the melt pool) and large particles. Compared with the as-built specimen, the annealed specimen has greater strain rate sensitivity. The effect of the material state on the tensile strength is dependent on the strain rate, and the annealing treatment may significantly decrease the tensile strength under low strain rate conditions; and weakly decrease it under high strain rate conditions. Finally, the spall strength dependence on the material state and the effect of the strain rate on the spall behavior were discussed.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Factors that affect the properties of additively-manufactured AlSi10Mg: Porosity versus microstructure
    Kan, Wen Hao
    Nadot, Yves
    Foley, Matthew
    Ridosz, Lionel
    Proust, Gwenaelle
    Cairney, Julie M.
    ADDITIVE MANUFACTURING, 2019, 29
  • [32] Study of energy density on mechanical properties of laser additively manufactured AlSi10Mg alloy
    Luo, Wei
    Hui, Jizhuang
    Wang, Junjie
    Yan, Zhiqiang
    Guo, Xu
    Xu, Zhiguang
    Proceedings of SPIE - The International Society for Optical Engineering, 2024, 13071
  • [33] FEM Simulation of High Speed Impact Behaviour of Additively Manufactured AlSi10Mg Alloy
    R. R. Nirmal
    B. S. V. Patnaik
    R. Jayaganthan
    Journal of Dynamic Behavior of Materials, 2021, 7 : 469 - 484
  • [34] Micromechanical study of intragranular stress and strain partitioning in an additively manufactured AlSi10Mg alloy
    Romanova, V.
    Balokhonov, R.
    Borodina, A.
    Zinovieva, O.
    Dymnich, E.
    Fortuna, S.
    Shugurov, A.
    THIN-WALLED STRUCTURES, 2024, 196
  • [35] FEM Simulation of High Speed Impact Behaviour of Additively Manufactured AlSi10Mg Alloy
    Nirmal, R. R.
    Patnaik, B. S. V.
    Jayaganthan, R.
    JOURNAL OF DYNAMIC BEHAVIOR OF MATERIALS, 2021, 7 (03) : 469 - 484
  • [36] Sustaining Cellular Structures in Additively Manufactured AlSi10Mg Alloy via Heat Treatments
    Alemu, Wondayehu Yeshewas
    Huang, Yi-Cheng
    Chung, Chen-Chou
    Chiu, Kuo-Chi
    Chen, Jhewn-Kuang
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2024,
  • [37] Surface Topographic Features after Milling of Additively Manufactured AlSi10Mg Aluminum Alloy
    Struzikiewicz, Grzegorz
    Sioma, Andrzej
    MATERIALS, 2022, 15 (10)
  • [38] Development of a Novel Laser Polishing Strategy for Additively Manufactured AlSi10Mg Alloy Parts
    Ben Mason
    Ryan, Michael
    Setchi, Rossi
    Kundu, Abhishek
    Ayre, Wayne Nishio
    Bhaduri, Debajyoti
    SUSTAINABLE DESIGN AND MANUFACTURING, SDM 2022, 2023, 338 : 272 - 282
  • [39] Relationship between ductility and the porosity of additively manufactured AlSi10Mg
    Laursen, Christopher M.
    DeJong, Stephanie A.
    Dickens, Sara M.
    Exil, Andrea N.
    Susan, Donald F.
    Carroll, Jay D.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 795
  • [40] Anisotropy of additively manufactured AlSi10Mg: threads and surface integrity
    Rizwan Ullah
    Jan Sher Akmal
    Sampsa V. A. Laakso
    Esko Niemi
    The International Journal of Advanced Manufacturing Technology, 2020, 107 : 3645 - 3662