Physics infused machine learning force fields for 2D materials monolayers

被引:4
|
作者
Yang, Yang [1 ]
Xu, Bo [1 ]
Zong, Hongxiang [1 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, 28 West Xianning Rd, Xian 710049, Peoples R China
来源
JOURNAL OF MATERIALS INFORMATICS | 2023年 / 3卷 / 04期
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
2D materials; mechanical properties; machine learning force fields; structural evolution; MOLECULAR-DYNAMICS; THERMAL-CONDUCTIVITY; APPROXIMATION; EXCHANGE;
D O I
10.20517/jmi.2023.31
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Large-scale atomistic simulations of two-dimensional (2D) materials rely on highly accurate and efficient force fields. Here, we present a physics-infused machine learning framework that enables the efficient development and interpretability of interatomic interaction models for 2D materials. By considering the characteristics of chemical bonds and structural topology, we have devised a set of efficient descriptors. This enables accurate force field training using a small dataset. The machine learning force fields show great success in describing the phase transformation and domain switching behaviors of monolayer Group IV monochalcogenides, e.g., GeSe and PbTe. Notably, this type of force field can be readily extended to other non-transition 2D systems, such as hexagonal boron nitride (hBN), h BN), leveraging their structural similarity. Our work provides a straightforward but accurate extension of simulation time and length scales for 2D materials.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Waterproof molecular monolayers stabilize 2D materials
    Su, Cong
    Yin, Zongyou
    Yan, Qing-Bo
    Wang, Zegao
    Lin, Hongtao
    Sun, Lei
    Xu, Wenshuo
    Yamada, Tetsuya
    Ji, Xiang
    Zettsu, Nobuyuki
    Teshima, Katsuya
    Warner, Jamie H.
    Dinca, Mircea
    Hu, Juejun
    Dong, Mingdong
    Su, Gang
    Kong, Jing
    Li, Ju
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (42) : 20844 - 20849
  • [22] Machine Learning Force Fields
    Unke, Oliver T.
    Chmiela, Stefan
    Sauceda, Huziel E.
    Gastegger, Michael
    Poltaysky, Igor
    Schuett, Kristof T.
    Tkatchenko, Alexandre
    Mueller, Klaus-Robert
    CHEMICAL REVIEWS, 2021, 121 (16) : 10142 - 10186
  • [23] BIGDML—Towards accurate quantum machine learning force fields for materials
    Huziel E. Sauceda
    Luis E. Gálvez-González
    Stefan Chmiela
    Lauro Oliver Paz-Borbón
    Klaus-Robert Müller
    Alexandre Tkatchenko
    Nature Communications, 13
  • [24] Thermal stability of 2D materials: Descriptor realization from machine learning
    Schleder, Gabriel
    Fazzio, Adalberto
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [25] Thickness identification of 2D materials by machine learning assisted optical microscopy
    Sirico, Daniele Gaetano
    Acampora, Giovanni
    Maddalena, Pasqualino
    Gesuele, Felice
    2021 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2021,
  • [26] Thickness Determination of Ultrathin 2D Materials Empowered by Machine Learning Algorithms
    Mao, Yu
    Wang, Lei
    Chen, Chenduan
    Yang, Zhan
    Wang, Jun
    LASER & PHOTONICS REVIEWS, 2023, 17 (04)
  • [27] Thickness Determination of Ultrathin 2D Materials Empowered by Machine Learning Algorithms
    Mao, Yu
    Wang, Lei
    Chen, Chenduan
    Yang, Zhan
    Wang, Jun
    LASER & PHOTONICS REVIEWS, 2023,
  • [28] Thickness Determination of Ultrathin 2D Materials Empowered by Machine Learning Algorithms
    Mao Y.
    Wang L.
    Chen C.
    Yang Z.
    Wang J.
    Laser and Photonics Reviews, 2023, 17 (04):
  • [29] Machine learning enabled fast optical identification and characterization of 2D materials
    Leger, Polina A.
    Ramesh, Aditya
    Ulloa, Talianna
    Wu, Yingying
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [30] Theoretical Methods for Excitonic Physics in 2D Materials
    Quintela, Mauricio F. C. Martins
    Henriques, Joao C. G.
    Tenorio, Luiz G. M.
    Peres, Nuno M. R.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2022, 259 (07):