Physics infused machine learning force fields for 2D materials monolayers

被引:4
|
作者
Yang, Yang [1 ]
Xu, Bo [1 ]
Zong, Hongxiang [1 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, 28 West Xianning Rd, Xian 710049, Peoples R China
来源
JOURNAL OF MATERIALS INFORMATICS | 2023年 / 3卷 / 04期
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
2D materials; mechanical properties; machine learning force fields; structural evolution; MOLECULAR-DYNAMICS; THERMAL-CONDUCTIVITY; APPROXIMATION; EXCHANGE;
D O I
10.20517/jmi.2023.31
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Large-scale atomistic simulations of two-dimensional (2D) materials rely on highly accurate and efficient force fields. Here, we present a physics-infused machine learning framework that enables the efficient development and interpretability of interatomic interaction models for 2D materials. By considering the characteristics of chemical bonds and structural topology, we have devised a set of efficient descriptors. This enables accurate force field training using a small dataset. The machine learning force fields show great success in describing the phase transformation and domain switching behaviors of monolayer Group IV monochalcogenides, e.g., GeSe and PbTe. Notably, this type of force field can be readily extended to other non-transition 2D systems, such as hexagonal boron nitride (hBN), h BN), leveraging their structural similarity. Our work provides a straightforward but accurate extension of simulation time and length scales for 2D materials.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Strength of 2D glasses explored by machine-learning force fields
    Shi, Pengjie
    Xu, Zhiping
    JOURNAL OF APPLIED PHYSICS, 2024, 136 (06)
  • [2] On the Technologies of Artificial Intelligence and Machine Learning for 2D Materials
    D. Yu. Kirsanova
    M. A. Soldatov
    Z. M. Gadzhimagomedova
    D. M. Pashkov
    A. V. Chernov
    M. A. Butakova
    A. V. Soldatov
    Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 2021, 15 : 485 - 494
  • [3] When Machine Learning Meets 2D Materials: A Review
    Lu, Bin
    Xia, Yuze
    Ren, Yuqian
    Xie, Miaomiao
    Zhou, Liguo
    Vinai, Giovanni
    Morton, Simon A.
    Wee, Andrew T. S.
    van der Wiel, Wilfred G.
    Zhang, Wen
    Wong, Ping Kwan Johnny
    ADVANCED SCIENCE, 2024, 11 (13)
  • [4] Exploring and machine learning structural instabilities in 2D materials
    Simone Manti
    Mark Kamper Svendsen
    Nikolaj R. Knøsgaard
    Peder M. Lyngby
    Kristian S. Thygesen
    npj Computational Materials, 9
  • [5] Exploring and machine learning structural instabilities in 2D materials
    Manti, Simone
    Svendsen, Mark Kamper
    Knosgaard, Nikolaj R. R.
    Lyngby, Peder M. M.
    Thygesen, Kristian S. S.
    NPJ COMPUTATIONAL MATERIALS, 2023, 9 (01)
  • [6] On the Technologies of Artificial Intelligence and Machine Learning for 2D Materials
    Kirsanova, D. Yu.
    Soldatov, M. A.
    Gadzhimagomedova, Z. M.
    Pashkov, D. M.
    Chernov, A. V.
    Butakova, M. A.
    Soldatov, A. V.
    JOURNAL OF SURFACE INVESTIGATION, 2021, 15 (03): : 485 - 494
  • [7] Machine Learning Study of the Magnetic Ordering in 2D Materials
    Acosta, Carlos Mera
    Ogoshi, Elton
    Souza, Jose Antonio
    Dalpian, Gustavo M.
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (07) : 9418 - 9432
  • [8] Training machine learning with physics-based simulations to predict 2D soil moisture fields in a changing climate
    Leonarduzzi, Elena
    Tran, Hoang
    Bansal, Vineet
    Hull, Robert B.
    de la Fuente, Luis
    Bearup, Lindsay A.
    Melchior, Peter
    Condon, Laura E.
    Maxwell, Reed M.
    FRONTIERS IN WATER, 2022, 4
  • [9] Application of Machine Learning Force Fields for Modeling Ferroelectric Materials
    Liu, Shi
    Huang, Jiawei
    Wu, Jing
    ACTA METALLURGICA SINICA, 2024, 60 (10) : 1312 - 1328
  • [10] Machine learning enables the discovery of 2D Invar and anti-Invar monolayers
    Tian, Shun
    Zhou, Ke
    Yin, Wanjian
    Liu, Yilun
    NATURE COMMUNICATIONS, 2024, 15 (01)