Privacy-Preserving Lane Change Prediction using Deep Learning Models

被引:0
|
作者
Qasemabadi, Armin Nejadhossein [1 ]
Mozaffari, Saeed [2 ]
Ahmadi, Majid [1 ]
Alirezaee, Shahpour [2 ]
机构
[1] Univ Windsor, Elect & Comp Engn, Windsor, ON, Canada
[2] Univ Windsor, Mech Automot & Mat Engn, Windsor, ON, Canada
关键词
Lane Change Prediction; Secure Multiparty Computation; Deep Learning; Intelligent Transportation Systems; Recurrent Neural Network;
D O I
10.1109/AIRC61399.2024.10671899
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Lane Change Prediction (LCP) is a pivotal component of Intelligent Transportation Systems (ITS) which aims to enhance road safety and optimize traffic flow. Deep learning models have been used in LCP systems, but the need for extensive data poses privacy challenges in deploying such models. This paper aims to utilize Secure Multiparty Computation (SMPC) technique that allows multiple parties to jointly compute lane change probability using their private inputs without revealing sensitive information to each other. We trained Recurrent Neural Network (RNN) models on HighD dataset. In the inference part, Secure Tanh function was utilized for privacy-preserving LCP. Experimental results show that the accuracy of the proposed LCP based on SMPC is almost the same as the traditional LCP with unsecure computation, by calculating MSE for main function in non-SMPC and SMPC scenarios in the range of 10(-7).
引用
收藏
页码:46 / 49
页数:4
相关论文
共 50 条
  • [21] Privacy-Preserving Federated Deep Learning With Irregular Users
    Xu, Guowen
    Li, Hongwei
    Zhang, Yun
    Xu, Shengmin
    Ning, Jianting
    Deng, Robert H.
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2022, 19 (02) : 1364 - 1381
  • [22] Privacy-Preserving Collaborative Deep Learning With Unreliable Participants
    Zhao, Lingchen
    Wang, Qian
    Zou, Qin
    Zhang, Yan
    Chen, Yanjiao
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2020, 15 : 1486 - 1500
  • [23] A comprehensive survey and taxonomy on privacy-preserving deep learning
    Tran, Anh-Tu
    Luong, The-Dung
    Huynh, Van-Nam
    NEUROCOMPUTING, 2024, 576
  • [24] Privacy-Preserving Deep Learning Based Record Linkage
    Ranbaduge, Thilina
    Vatsalan, Dinusha
    Ding, Ming
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (11) : 6839 - 6850
  • [25] Privacy-Preserving Deep Learning With Homomorphic Encryption: An Introduction
    Falcetta, Alessandro
    Roveri, Manuel
    IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2022, 17 (03) : 14 - 25
  • [26] PVFL: Verifiable federated learning and prediction with privacy-preserving
    Yin, Benxin
    Zhang, Hanlin
    Lin, Jie
    Kong, Fanyu
    Yu, Leyun
    COMPUTERS & SECURITY, 2024, 139
  • [27] Privacy-Preserving Deep Learning on Big Data in Cloud
    Fan, Yongkai
    Zhang, Wanyu
    Bai, Jianrong
    Lei, Xia
    Li, Kuanching
    CHINA COMMUNICATIONS, 2023, 20 (11) : 176 - 186
  • [28] On Fully Homomorphic Encryption for Privacy-Preserving Deep Learning
    Hernandez Marcano, Nestor J.
    Moller, Mads
    Hansen, Soren
    Jacobsen, Rune Hylsberg
    2019 IEEE GLOBECOM WORKSHOPS (GC WKSHPS), 2019,
  • [29] Competitor Attack Model for Privacy-Preserving Deep Learning
    Zhao, Dongdong
    Liao, Songsong
    Li, Huanhuan
    Xiang, Jianwen
    2023 IEEE/ACM 23RD INTERNATIONAL SYMPOSIUM ON CLUSTER, CLOUD AND INTERNET COMPUTING WORKSHOPS, CCGRIDW, 2023, : 133 - 140
  • [30] EPDL: An efficient and privacy-preserving deep learning for crowdsensing
    Chang Xu
    Guoxie Jin
    Liehuang Zhu
    Chuan Zhang
    Yu Jia
    Peer-to-Peer Networking and Applications, 2022, 15 : 2529 - 2541