Enhancing acetone detection of In2O3-decorated MOF-derived Fe2O3 spindles with Pt nanoparticles functionalization

被引:1
|
作者
Chen, Gang [1 ]
Tian, Ruonan [1 ]
Li, Qiaolin [1 ]
Cao, Tiantian [1 ]
Tan, Huai [1 ]
Guan, Hongtao [1 ]
Dong, Chengjun [1 ]
Comini, Elisabetta [2 ]
机构
[1] Yunnan Univ, Sch Mat & Energy, Kunming 650091, Yunnan, Peoples R China
[2] Univ Brescia, Dept Informat Engn, Via Branze 38, I-25123 Brescia, Italy
基金
中国国家自然科学基金;
关键词
MOF; Core-shell; Gas sensor; Acetone detection; METAL-ORGANIC FRAMEWORKS; SHELL; SENSORS;
D O I
10.1016/j.jallcom.2024.176998
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Design: sensing materials with core-shell structure is an excellent strategy to achieve high sensing performance toward acetone detection. Herein, MIL-88A(Fe) was fabricated via a hydrothermal route, which renders as a template to fabricate Fe2O3@In2O3 core-shell spindles structure. Gas sensing results show that the sensor based on Fe2O3@In2O3 exhibit enhanced response of 193-200 ppm acetone than that of 36 for pristine Fe2O3 at 200 degrees C. After Pt functionalization, the response of Fe2O3@In2O3/Pt to 200 ppm acetone is up to 839 at a reducing working temperature of 180 degrees C with a good selectivity and long-term stability. A synergistic mechanism originated from the intrinsic merits of Fe2O3 and In2O3, the 1D core-shell structure, the creation of heterojunction at the interface of Fe2O3 and In2O3 and the creation of Shottky junction at In2O3 and Pt nanoparticles, and the catalytic reaction of Pt holds accountable for the significant improvement in acetone sensing.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Thermally Induced Solid-State Syntheses of γ-Fe2O3 Nanoparticles and Their Transformation to α-Fe2O3 via ε-Fe2O3
    R. Zboril
    M. Mashlan
    K. Barcova
    M. Vujtek
    Hyperfine Interactions, 2002, 139-140 : 597 - 606
  • [22] MOF-Derived Porous Fe2O3 Nanoparticles Coupled with CdS Quantum Dots for Degradation of Bisphenol A under Visible Light Irradiation
    Liang, Ruowen
    He, Zhoujun
    Zhou, Chen
    Yan, Guiyang
    Wu, Ling
    NANOMATERIALS, 2020, 10 (09) : 1 - 14
  • [23] MOF-Derived Fe2O3/Nitrogen/Carbon Composite as a Stable Heterogeneous Electro-Fenton Catalyst
    Lu, Jia-Yuan
    Yuan, Yan-Ru
    Hu, Xiao
    Liu, Wu-Jun
    Li, Chen-Xuan
    Liu, Hou-Qi
    Li, Wen-Wei
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2020, 59 (05) : 1800 - 1808
  • [24] MOF-derived porous hollow α-Fe2O3 microboxes modified by silver nanoclusters for enhanced pseudocapacitive storage
    Yu, Zhuying
    Zhang, Xingyan
    Wei, Lu
    Guo, Xin
    APPLIED SURFACE SCIENCE, 2019, 463 : 616 - 625
  • [25] In situ preparation of MOF-derived Fe2O3 nanorods for visible-light-driven oxygen evolution
    Wu, Heng
    Lai, Longjie
    Li, Zhengdao
    Hu, Jiyue
    Zhang, Li
    Younas, Waqar
    Liu, Qi
    CATALYSIS SCIENCE & TECHNOLOGY, 2023, 13 (23) : 6635 - 6639
  • [26] MIL-88B(Fe)-Derived Fe2O3 Hexagonal Spindles for Ultralow Concentration Acetone Detection and Gas-Sensing Mechanism
    Tang, Shan
    Xu, Jingcai
    Lu, Xinqin
    Chen, Weijie
    Chen, Hongwei
    Hong, Bo
    Wang, Xinqing
    IEEE SENSORS JOURNAL, 2024, 24 (23) : 38685 - 38692
  • [27] Magnetic nanoparticles with enhanced γ-Fe2O3 to α-Fe2O3 phase transition temperature
    Gnanaprakash, G.
    Ayyappan, S.
    Jayakumar, T.
    Philip, John
    Raj, Baldev
    NANOTECHNOLOGY, 2006, 17 (23) : 5851 - 5857
  • [28] Peroxydisulfate activation by 2D MOF-derived Ni/Fe3O4 nanoparticles decorated in 3D graphene oxide network
    Liu, Minjun
    Liu, Ying
    Liu, Xinru
    Chu, Chengcheng
    Yao, Ducheng
    Mao, Shun
    SEPARATION AND PURIFICATION TECHNOLOGY, 2022, 301
  • [29] α-Fe2O3 versus β-Fe2O3: Controlling the Phase of the Transformation Product of ε-Fe2O3 in the Fe2O3/SiO2 System
    Brazda, Petr
    Kohout, Jaroslav
    Bezdicka, Petr
    Kmjec, Tomas
    CRYSTAL GROWTH & DESIGN, 2014, 14 (03) : 1039 - 1046
  • [30] Temperature-programmed reduction of Fe2O3/Al2O3 and Pt/Fe2O3/Al2O3 catalysts
    Chernavskii, PA
    Pankina, GV
    Lunin, VV
    ZHURNAL FIZICHESKOI KHIMII, 1998, 72 (11): : 2086 - 2088