Identification and Characterization of Innate Immunity in Actinidia melanandra in Response to Pseudomonas syringae pv. actinidiae

被引:1
|
作者
Hemara, Lauren M. [1 ,2 ]
Chatterjee, Abhishek [2 ]
Yeh, Shin-Mei [2 ]
Chen, Ronan K. Y. [3 ]
Hilario, Elena [2 ]
Lievre, Liam Le [2 ,4 ]
Crowhurst, Ross N. [2 ]
Bohne, Deborah [2 ]
Arshed, Saadiah [2 ]
Patterson, Haileigh R. [1 ,2 ]
Barrett-Manako, Kelvina [2 ]
Thomson, Susan [5 ]
Allan, Andrew C. [2 ]
Brendolise, Cyril [2 ]
Chagne, David [3 ]
Templeton, Matthew D. [1 ,2 ]
Tahir, Jibran [2 ]
Jayaraman, Jay [2 ]
机构
[1] Univ Auckland, Sch Biol Sci, Auckland, New Zealand
[2] New Zealand Inst Plant & Food Res Ltd, Mt Albert Res Ctr, Auckland, New Zealand
[3] Food Res Ltd, New Zealand Inst Plant, Palmerston North, New Zealand
[4] Univ Otago, Dept Biochem, Dunedin, New Zealand
[5] New Zealand Inst Plant & Food Res Ltd, Lincoln Res Ctr, Auckland, New Zealand
来源
PLANT CELL AND ENVIRONMENT | 2025年 / 48卷 / 02期
关键词
effector triggered immunity; gene expression; kiwifruit; pathogens; pattern triggered immunity; transcriptome; BACTERIAL CANKER; TRIGGERED IMMUNITY; CAUSAL AGENT; CELL-DEATH; RNA-SEQ; KIWIFRUIT; ANNOTATION; RESISTANCE; EVOLUTION; TOOL;
D O I
10.1111/pce.15189
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Pseudomonas syringae pv. actinidiae biovar 3 (Psa3) has decimated kiwifruit orchards growing susceptible kiwifruit Actinidia chinensis varieties. Effector loss has occurred recently in Psa3 isolates from resistant kiwifruit germplasm, resulting in strains capable of partially overcoming resistance present in kiwiberry vines (Actinidia arguta, Actinidia polygama, and Actinidia melanandra). Diploid male A. melanandra recognises several effectors, sharing recognition of at least one avirulence effector (HopAW1a) with previously studied tetraploid kiwiberry vines. Sequencing and assembly of the A. melanandra genome enabled the characterisation of the transcriptomic response of this non-host to wild-type and genetic mutants of Psa3. A. melanandra appears to mount a classic effector-triggered immunity (ETI) response to wildtype Psa3 V-13, as expected. Surprisingly, the type III secretion (T3SS) system-lacking Psa3 V-13 triangle hrcC strain did not appear to trigger pattern-triggered immunity (PTI) despite lacking the ability to deliver immunity-suppressing effectors. Contrasting the A. melanandra responses to an effectorless Psa3 V-13 triangle 33E strain and to Psa3 V-13 triangle hrcC suggested that PTI triggered by Psa3 V-13 was based on the recognition of the T3SS itself. The characterisation of both ETI and PTI branches of innate immunity responses within A. melanandra further enables breeding for durable resistance in future kiwifruit cultivars.
引用
收藏
页码:1037 / 1050
页数:14
相关论文
共 50 条
  • [41] Isolation and characterisation of phages against Pseudomonas syringae pv. actinidiae
    Yin, Yujie
    Ni, Pei'en
    Deng, Bohan
    Wang, Shiping
    Xu, Wenping
    Wang, Dapeng
    ACTA AGRICULTURAE SCANDINAVICA SECTION B-SOIL AND PLANT SCIENCE, 2019, 69 (03): : 199 - 208
  • [42] Genomic Diversity of Pseudomonas syringae pv. actinidiae (Psa) in China
    Gallipoli, L.
    Butler, M.
    Mazzaglia, A.
    Stockwell, P.
    Lamont, I.
    Zhu, L.
    Liu, P.
    Balestra, G. M.
    Poulter, R. T. M.
    I INTERNATIONAL SYMPOSIUM ON BACTERIAL CANKER OF KIWIFRUIT, 2015, 1095 : 59 - 64
  • [43] Pseudomonas syringae pv. actinidiae: the Pathogen That Brings Us Together
    Vanneste, J. L.
    I INTERNATIONAL SYMPOSIUM ON BACTERIAL CANKER OF KIWIFRUIT, 2015, 1095 : 21 - 23
  • [44] Insect-mediated vectoring of Pseudomonas syringae pv. actinidiae
    Donati, I
    Cellini, A.
    Buriani, G.
    Mauri, S.
    Spinelli, F.
    IX INTERNATIONAL SYMPOSIUM ON KIWIFRUIT, 2018, 1218 : 269 - 273
  • [45] Antibacterial mechanism of forsythoside A against Pseudomonas syringae pv. actinidiae
    Pei, Hurong
    Lu, Mingxiu
    Long, Li
    Long, Zhangfu
    MICROBIAL PATHOGENESIS, 2022, 173
  • [46] Identification, Virulence, and Distribution of Two Biovars of Pseudomonas syringae pv. actinidiae in New Zealand
    Vanneste, J. L.
    Yu, J.
    Cornish, D. A.
    Tanner, D. J.
    Windner, R.
    Chapman, J. R.
    Taylor, R. K.
    Mackay, J. F.
    Dowlut, S.
    PLANT DISEASE, 2013, 97 (06) : 708 - 719
  • [47] Red and Blue Light Differently Influence Actinidia chinensis Performance and Its Interaction with Pseudomonas syringae pv. Actinidiae
    Correia, Cristiana
    Magnani, Federico
    Pastore, Chiara
    Cellini, Antonio
    Donati, Irene
    Pennisi, Giuseppina
    Paucek, Ivan
    Orsini, Francesco
    Vandelle, Elodie
    Santos, Conceicao
    Spinelli, Francesco
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (21)
  • [48] In vitro and in planta screening of compounds for the control of Pseudomonas syringae pv. actinidiae in Actinidia chinensis var. chinensis
    Angela Brunetti
    Nicoletta Pucci
    Vanessa Modesti
    Valentina Lumia
    Arianna Latini
    Stefania Loreti
    Massimo Pilotti
    European Journal of Plant Pathology, 2020, 158 : 829 - 848
  • [49] Proteomic changes in Actinidia chinensis shoot during systemic infection with a pandemic Pseudomonas syringae pv. actinidiae strain
    Petriccione, Milena
    Di Cecco, Ilaria
    Arena, Simona
    Scaloni, Andrea
    Scortichini, Marco
    JOURNAL OF PROTEOMICS, 2013, 78 : 461 - 476
  • [50] Current situation and characterization of Pseudomonas syringae pv. actinidiae on kiwifruit in Galicia (northwest Spain)
    Abelleira, A.
    Ares, A.
    Aguin, O.
    Picoaga, A.
    Lopez, M. M.
    Mansilla, P.
    PLANT PATHOLOGY, 2014, 63 (03) : 691 - 699