Machine learning model predicting axillary pathologic response after neoadjuvant chemotherapy for clinically node-positive breast cancer

被引:0
|
作者
Matsumoto, A. [1 ]
Sugimoto, M. [2 ]
Naruse, S. [1 ]
Isono, Y. [1 ]
Maeda, Y. [1 ]
Sato, A. [1 ]
Yamada, M. [1 ]
Ikeda, T. [1 ]
Jinno, H. [1 ]
机构
[1] Teikyo Univ, Sch Med, Dept Surg, Tokyo, Japan
[2] Keio Univ, Grad Sch Media & Governance, Yokohama, Kanagawa, Japan
关键词
D O I
10.1016/j.ejca.2024.113742
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
169 (PB-07
引用
收藏
页码:65 / 65
页数:1
相关论文
共 50 条
  • [1] A Predictive Model for Axillary Pathologic Response after Neoadjuvant Chemotherapy for Clinically Node-Positive Breast Cancer
    Matsumoto, Akiko
    Naruse, Saki
    Isono, Yuka
    Maeda, Yuka
    Sato, Ayana
    Yamada, Miki
    Ikeda, Tatsuhiko
    Jinno, Hiromitsu
    CANCER RESEARCH, 2023, 83 (05)
  • [2] Improved Model for Predicting Axillary Response to Neoadjuvant Chemotherapy in Patients with Clinically Node-Positive Breast Cancer
    Kim, Hyung Suk
    Shin, Man Sik
    Kim, Chang Jong
    Yoo, Sun Hyung
    Yoo, Tae Kyung
    Eom, Yong Hwa
    Chae, Byung Joo
    Song, Byung Joo
    JOURNAL OF BREAST CANCER, 2017, 20 (04) : 378 - 385
  • [3] Nomograms for Predicting Axillary Response to Neoadjuvant Chemotherapy in Clinically Node-Positive Patients with Breast Cancer
    Vila, Jose
    Mittendorf, Elizabeth A.
    Farante, Gabriel
    Bassett, Roland L.
    Veronesi, Paolo
    Galimberti, Viviana
    Peradze, Nicolas
    Stauder, Michael C.
    Chavez-MacGregor, Mariana
    Litton, Jennifer F.
    Huo, Lei
    Kuerer, Henry M.
    Hunt, Kelly K.
    Caudle, Abigail S.
    ANNALS OF SURGICAL ONCOLOGY, 2016, 23 (11) : 3501 - 3509
  • [4] Nomograms for Predicting Axillary Response to Neoadjuvant Chemotherapy in Clinically Node-Positive Patients with Breast Cancer
    Jose Vila
    Elizabeth A. Mittendorf
    Gabriel Farante
    Roland L. Bassett
    Paolo Veronesi
    Viviana Galimberti
    Nicolas Peradze
    Michael C. Stauder
    Mariana Chavez-MacGregor
    Jennifer F. Litton
    Lei Huo
    Henry M. Kuerer
    Kelly K. Hunt
    Abigail S. Caudle
    Annals of Surgical Oncology, 2016, 23 : 3501 - 3509
  • [5] Predicting axillary pathologic response to neoadjuvant chemotherapy for node-positive breast cancer: Clinical predictive model by using MRI and ultrasound
    Matsumoto, Akiko
    Yamada, Miki
    Tsukahara, Daisuke
    Umemoto, Yasuko
    Jinno, Hiromitsu
    CANCER RESEARCH, 2021, 81 (04)
  • [6] Nomogram predicting Axillary PCR after neoadjuvant chemotherapy in node-positive breast cancer
    Kim, J. Y.
    Kim, S.
    Ryu, J.
    Park, H. S.
    Park, S.
    Kim, S. I.
    BREAST, 2015, 24 : S138 - S138
  • [7] Predictors of axillary node response in clinically node-positive patients undergoing neoadjuvant chemotherapy for breast cancer
    Ladak, Farah
    Lesniak, David
    Chua, Natalie
    Peiris, Lashan
    ANNALS OF SURGICAL ONCOLOGY, 2019, 26 : 264 - 265
  • [8] Axillary Management Following Neoadjuvant Chemotherapy in Clinically Node-Positive Breast Cancer
    Mitri, Samir
    Roldan-Vasquez, Estefania
    Flores, Rene
    Pardo, Jaime
    Borgonovo, Giulia
    Davis, Roger B.
    James, Ted A.
    CLINICAL BREAST CANCER, 2024, 24 (06) : 527 - 532
  • [9] Nomogram for predicting axillary lymph node pathological response in node-positive breast cancer patients after neoadjuvant chemotherapy
    Wang Wenyan
    Wang Xin
    Liu Jiaqi
    Zhu Qiang
    Wang Xiang
    Wang Pilin
    中华医学杂志英文版, 2022, 135 (03) : 333 - 340
  • [10] Nomogram for predicting axillary lymph node pathological response in node-positive breast cancer patients after neoadjuvant chemotherapy
    Wang, Xin
    Wang, Wenyan
    Liu, Jiaxiang
    Meng, Xiangzhi
    Liu, Jiaqi
    Guo, Changyuan
    Song, Ying
    Cui, Ningyi
    Li, Qiao
    Xing, Zeyu
    Wang, Jie
    Zhang, Menglu
    Feng, Kexin
    Wang, Pilin
    Wang, Xiang
    CANCER RESEARCH, 2021, 81 (04)