Thermal conductivity of compressed SiO2 nanoglasses. A molecular dynamics study

被引:0
|
作者
Hul, Anton [1 ]
Keblinski, Pawel [2 ]
Pietrzak, Tomasz K. [1 ]
机构
[1] Warsaw Univ Technol, Fac Phys, Koszykowa 75, PL-00662 Warsaw, Poland
[2] Rensselaer Polytech Inst, Mat Sci & Engn Dept, Troy, NY USA
关键词
Nanoglasses; Glassy oxide nanoparticles; Silicon oxide; Thermal conductivity; Green-Kubo; Direct method; SILICA; KIND;
D O I
10.1016/j.ijheatmasstransfer.2025.126761
中图分类号
O414.1 [热力学];
学科分类号
摘要
Nanoglasses synthesized by consolidating amorphous nanoparticles under pressure may exhibit significantly altered properties, for example greatly improved ductility, as compared to pressure-treated bulk glasses of the same composition. In this work, using molecular dynamics simulations, we examined the relationship between thermal transport and pressure treatment parameters of silica nanoglasses. Surprisingly, within 8 and 16 GPa pressure treatment, the studied nanoglasses exhibit higher thermal conductivity than bulk glasses subjected to the same pressure protocols, despite the fact that they still have porosity. Our results indicate that overall nanoglass density is the primary factor determining the thermal conductivity while the porosity and other atomic/microstructural details do not have a negative effect on thermal transport. Our study demonstrate that such nanomaterials belong to a class of materials whose thermal properties can be tuned by engineering their microstructure with particle size and - mostly - high-pressure treatment.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] OPTICAL MEASUREMENTS OF THE THERMAL CONDUCTIVITY OF POROUS SiO2 FILMS
    Hopkins, Patrick E.
    Kaehr, Bryan J.
    Phinney, Leslie M.
    Koehler, Timothy P.
    Grillet, Anne M.
    Dunphy, Darren
    Garcia, Fred
    Brinker, C. Jeffrey
    PROCEEDINGS OF THE ASME INTERNATIONAL HEAT TRANSFER CONFERENCE - 2010, VOL 6: MICROCHANNELS, NANO, NANOFLUIDS, SPRAY COOLING, POROUS MEDIA, 2010, : 361 - 369
  • [32] High thermal conductivity in polaritonic SiO2 nanoparticle beds
    Tervo, E. J.
    Adewuyi, O. S.
    Hammonds, J. S., Jr.
    Cola, B. A.
    MATERIALS HORIZONS, 2016, 3 (05) : 434 - 441
  • [33] The thermal conductivity of kBr, KCI and SiO2 at low temperatures
    De Haas, WJ
    Biermasz, T
    PHYSICA, 1937, 4 : 0752 - 0756
  • [34] Molecular dynamics simulation of thermal boundary conductance between carbon nanotubes and SiO2
    Ong, Zhun-Yong
    Pop, Eric
    PHYSICAL REVIEW B, 2010, 81 (15)
  • [35] Molecular dynamics study of the thermal conductivity in nanofluids
    Topal, I
    Servantie, J.
    CHEMICAL PHYSICS, 2019, 516 : 147 - 151
  • [36] Thermal Conductivity of Silicene - A Molecular Dynamics Study
    Kamatagi, M. D.
    Sankeshwar, N. S.
    PROCEEDINGS OF THE 59TH DAE SOLID STATE PHYSICS SYMPOSIUM 2014 (SOLID STATE PHYSICS), 2015, 1665
  • [37] Molecular dynamics studies of brittle fracture of SiO2
    Tang, Q. H.
    Cui, L. P.
    ADVANCES IN HETEROGENEOUS MATERIAL MECHANICS 2008, 2008, : 356 - 359
  • [38] Molecular Dynamics Simulation of Amorphous SiO2 Fracture
    Knoll, Aaron
    Insley, Joe
    Papka, Michael E.
    Nomura, Ken-ichi
    Kalia, Rajiv K.
    Nakano, Aiichiro
    Vashishta, Priya
    2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC), 2012, : 1569 - +
  • [39] Molecular dynamics simulation of amorphous siO2 nanoparticles
    Van Hoang, Vo
    JOURNAL OF PHYSICAL CHEMISTRY B, 2007, 111 (44): : 12649 - 12656
  • [40] Molecular dynamics study of one dimensional nanoscale Si/SiO2 interfaces
    Carlos Castro-Palacio, Juan
    Velazquez-Abad, Luisberis
    Fernandez, Michael
    Quintin Cuador-Gil, Jose
    EUROPEAN PHYSICAL JOURNAL D, 2013, 67 (05):