The application of silicon carbide (SiC) MOSFETs in the field of high voltage and high frequency brings the major challenge of high switching loss. To give full advantage of its performance in high-frequency applications and provide a simulation analysis method for the analysis and design of power electronic systems, it is essential to establish simulation models of the SiC power MOSFET switching behavior suitable for different ambient temperatures. A temperature-dependent compact SPICE model considering parasitic parameters is proposed in this article, which uses only the parameters in the datasheet or provided by manufacturers. The main technology-dependent parameters are analyzed and discussed in detail, including the nonlinear parasitic capacitance, parasitic parameters of the power module, and static characteristic parameters. In static characteristics, a simple and continuous equation is used to describe the drain-source current of the SiC power MOSFET. The static characteristic parameters of the SPICE model were compared with the 1.2-kV SiC power MOSFET, manufactured by ROHM, Inc., (SCT3030KLHR). Subsequently, the dynamic characteristic is verified by comparing the simulation results with experimental results in a double pulse circuit employing the half-bridge module under different temperatures. Comparisons between the datasheet and experiments demonstrate the precision of the modeling methodology and the consistency of the results.