Development of multiparametric bioprinting method for generation of 3D printed cell-laden structures

被引:0
|
作者
Lipshutz, Sophie [1 ,2 ]
Kim, Yoontae [1 ,2 ]
Curtis, Micaila [1 ,2 ]
Friedrich, Leanne [3 ]
Alimperti, Stella [1 ,2 ,4 ]
机构
[1] Georgetown Univ, Dept Biochem & Mol & Cellular Biol, Washington, DC 20057 USA
[2] Georgetown Univ, Ctr Biol & Biomed Engn, Washington, DC USA
[3] Natl Inst Stand & Technol, Mat Sci & Engn Div, Mat Measurement Lab, Gaithersburg, MD 20899 USA
[4] Georgetown Univ, Inst Soft Matter Synth & Metrol, Washington, DC 20057 USA
基金
美国国家卫生研究院;
关键词
3D bioprinting; additive manufacturing; cell viability; regenerative medicine; shear stress; tissue engineering; ORGAN SHORTAGE; TISSUE; REGENERATION; FUTURE;
D O I
10.1002/btpr.70016
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The organ transplantation field requires new approaches for replacing and regenerating tissues due to the lack of adequate transplant methods. Three-dimensional (3D) extrusion-based bioprinting is a rapid prototyping approach that can engineer 3D scaffolds for tissue regeneration applications. In this process, 3D printed cell-based constructs, consisting of biomaterials, growth factors, and cells, are formed by the extrusion of bioinks from nozzles. However, extrusion applies shear stresses to cells, often leading to cellular damage or membrane rupture. To address this limitation, herein, we developed and optimized a 3D bioprinting approach by evaluating the effect of key extrusion-based 3D bioprinting parameters-bioink viscosity, nozzle size, shape, and printing speed-on cell viability. Our results revealed that cells printed in higher-viscosity bioinks, with smaller, cylindrical nozzles, exhibited lower viability due to their exposure to high shear stresses. Translational flow speed had a cell-dependent impact, as different cell types have different sensitivities to the magnitude and duration of shear stress inside the nozzle. Overall, evaluating these parameters could facilitate the development of 3D high-resolution bioprinted constructs for tissue regeneration applications, offering a more efficient alternative to traditional fabrication methods, which are often labor intensive, expensive, and repetitive.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] 3D bioprinting of stem cell-laden cardiac patch: A promising alternative for myocardial repair
    Das, Sanskrita
    Nam, Hyoryung
    Jang, Jinah
    APL BIOENGINEERING, 2021, 5 (03)
  • [32] Synchronous 3D Bioprinting of Large-Scale Cell-Laden Constructs with Nutrient Networks
    Shao, Lei
    Gao, Qing
    Xie, Chaoqi
    Fu, Jianzhong
    Xiang, Meixiang
    He, Yong
    ADVANCED HEALTHCARE MATERIALS, 2020, 9 (15)
  • [33] Collagen-based bioink for 3D bioprinting to obtain mechanically enhanced porous 3D cell-laden structure
    Koo, YoungWon
    Lee, Hyeongjin
    Kim, WonJin
    Lee, Jiun
    Jo, SeoYul
    Kim, GeunHyung
    TISSUE ENGINEERING PART A, 2022, 28 : 691 - 691
  • [34] Cell-Laden Nanocellulose/Chitosan-Based Bioinks for 3D Bioprinting and Enhanced Osteogenic Cell Differentiation
    Maturavongsadit, Panita
    Narayanan, Lokesh Karthik
    Chansoria, Parth
    Shirwaiker, Rohan
    Benhabbour, S. Rahima
    ACS APPLIED BIO MATERIALS, 2021, 4 (03) : 2342 - 2353
  • [35] Design and Synthesis of Stem Cell-Laden Keratin/Glycol Chitosan Methacrylate Bioinks for 3D Bioprinting
    Yu, Kai-Fu
    Lu, Ting-Yu
    Li, Yi-Chen Ethan
    Teng, Kuang-Chih
    Chen, Yin-Chuan
    Wei, Yang
    Lin, Tzu-En
    Cheng, Nai-Chen
    Yu, Jiashing
    BIOMACROMOLECULES, 2022, 23 (07) : 2814 - 2826
  • [36] Patient-specific meniscus prototype based on 3D bioprinting of human cell-laden scaffold
    Filardo, G.
    Petretta, M.
    Cavallo, C.
    Roseti, L.
    Durante, S.
    Albisinni, U.
    Grigolo, B.
    BONE & JOINT RESEARCH, 2019, 8 (02): : 101 - 106
  • [37] Stem Cell-Laden Hydrogel-Based 3D Bioprinting for Bone and Cartilage Tissue Engineering
    Yang, Zhimin
    Yi, Ping
    Liu, Zhongyue
    Zhang, Wenchao
    Mei, Lin
    Feng, Chengyao
    Tu, Chao
    Li, Zhihong
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2022, 10
  • [38] Microfluidic coaxial 3D bioprinting of cell-laden microfibers and microtubes for salivary gland tissue engineering
    Yin, Yu
    Vazquez-Rosado, Ephraim J.
    Wu, Danielle
    Viswananthan, Vignesh
    Farach, Andrew
    Farach-Carson, Mary C.
    Harrington, Daniel A.
    BIOMATERIALS ADVANCES, 2023, 154
  • [39] Development of novel alginate-polyethyleneimine cell-laden bioink designed for 3D bioprinting of cutaneous wound healing scaffolds
    Khoshnood, Negin
    Zamanian, Ali
    JOURNAL OF APPLIED POLYMER SCIENCE, 2022, 139 (21)
  • [40] CONSTRUCTUNG 3D CELL-LADEN HYDROGELS ON ELECTROMOLDING
    Lai, Yi-Han
    Fan, Shih-Kang
    2015 TRANSDUCERS - 2015 18TH INTERNATIONAL CONFERENCE ON SOLID-STATE SENSORS, ACTUATORS AND MICROSYSTEMS (TRANSDUCERS), 2015, : 1865 - 1868