Machine Learning Methods for Predicting Syncope Severity in the Emergency Department: A Retrospective Analysis

被引:0
|
作者
Martinez-Licort, Rosmeri [1 ]
Sahelices, Benjamin [1 ]
de la Torre, Isabel [2 ]
Vegas, Jesus [3 ]
机构
[1] Univ Valladolid, Dept Comp Sci, GCME Res Grp, Valladolid, Spain
[2] Univ Valladolid, Dept Signal Theory Commun & Telemat Engn, Valladolid, Spain
[3] Univ Valladolid, Dept Comp Sci, Valladolid, Spain
关键词
emergency medicine; forecasting; health service administration; machine learning; syncope; CT HEAD RULE; CERVICAL-SPINE; CRITERIA; INJURY; RISK;
D O I
10.1002/hsr2.70477
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Background and AimsSyncope is a frequent reason for hospital emergency admissions, presenting significant challenges in determining its cause and associated risks. Despite its prevalence, research on using artificial intelligence (AI) to improve patient outcomes in this context has been limited. The main objective of current study is to predict the severity of syncope cases using machine learning (ML) algorithms based on data collected during on-site treatment and ambulance transportation.MethodsThis study analyzed 572 records from five Spanish public hospitals (2018-2021), focusing on hospitalization, ICU admission, and mortality. A three-phase strategy was used: data preprocessing, model exploration, and model selection. In the exploration phase, three data transformations techniques were applied and in each of them, models were evaluated using stratified 10-fold cross-validation, optimizing AUC, accuracy, and recall, with emphasis on minimizing false negatives (FN). The top-performing models were fine-tuned and tested. The strategy was implemented using Python libraries and a diverse set of ML classifiers were applied, including linear discriminant analysis (LDA), random forest (RF), dummy classifier (DC), and gradient boosting (GB).ResultsThe RF classifier performed best for predicting hospitalization, reducing FN to 37% and achieving a true negative rate (TN) of 78%, with a recall of 0.63 and accuracy of 0.74. For ICU, DC showed FN = 29%, TN = 57%, recall = 0.625, and accuracy = 0.58. The LDA classifier excelled in predicting hospital mortality, with FN = 40%, TN = 89%, recall = 0.6, and accuracy = 0.88. These results indicate that RF was superior for predicting hospitalization, while DC for ICU and LDA performed better for predicting mortality.ConclusionsThis study provides an experimental foundation for the application of ML techniques in managing syncope in ED. The intention is to stimulate AI research in this area, with a view to integrating these models into clinical workflows in the future.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Machine learning algorithms for early sepsis detection in the emergency department: A retrospective study
    Kijpaisalratana, Norawit
    Sanglertsinlapachai, Daecha
    Techaratsami, Siwapol
    Musikatavorn, Khrongwong
    Saoraya, Jutamas
    International Journal of Medical Informatics, 2022, 160
  • [22] Machine Learning for Emergency Department Management
    Benbelkacem, Sofia
    Kadri, Farid
    Atmani, Baghdad
    Chaabane, Sondes
    INTERNATIONAL JOURNAL OF INFORMATION SYSTEMS IN THE SERVICE SECTOR, 2019, 11 (03) : 19 - 36
  • [23] High-Sensitive Troponin Measurement in Emergency Department Patients Presenting with Syncope: A Retrospective Analysis
    Lindner, Gregor
    Pfortmueller, Carmen A.
    Funk, Georg-Christian
    Leichtle, Alexander B.
    Fiedler, Georg Martin
    Exadaktylos, Aristomenis K.
    PLOS ONE, 2013, 8 (06):
  • [24] Machine Learning Models for Predicting Mortality in Patients with Cirrhosis and Acute Upper Gastrointestinal Bleeding at an Emergency Department: A Retrospective Cohort Study
    Tsai, Shih-Chien
    Lin, Ching-Heng
    Chu, Cheng-C. J.
    Lo, Hsiang-Yun
    Ng, Chip-Jin
    Hsu, Chun-Chuan
    Chen, Shou-Yen
    DIAGNOSTICS, 2024, 14 (17)
  • [25] Machine Learning for Predicting Cancer Severity
    Qin, Alex
    Hasan, Md Rakibul
    Ahmed, Khandaker Asif
    Hossain, Md Zakir
    2022 IEEE 10TH INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS (ICHI 2022), 2022, : 527 - 529
  • [26] Predicting mortality among septic patients presenting to the emergency department–a cross sectional analysis using machine learning
    Adam Karlsson
    Willem Stassen
    Amy Loutfi
    Ulrika Wallgren
    Eric Larsson
    Lisa Kurland
    BMC Emergency Medicine, 21
  • [27] Machine learning models for predicting unscheduled return visits to an emergency department: a scoping review
    Yi-Chih Lee
    Chip-Jin Ng
    Chun-Chuan Hsu
    Chien-Wei Cheng
    Shou-Yen Chen
    BMC Emergency Medicine, 24
  • [28] Predicting daily emergency department visits using machine learning could increase accuracy
    Gafni-Pappas, Gregory
    Khan, Mohammad
    AMERICAN JOURNAL OF EMERGENCY MEDICINE, 2023, 65 : 5 - 11
  • [29] Predicting hospital admission for older emergency department patients: Insights from machine learning
    Mowbray, Fabrice
    Zargoush, Manaf
    Jones, Aaron
    de Wit, Kerstin
    Costa, Andrew
    INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2020, 140
  • [30] Machine learning models for predicting unscheduled return visits to an emergency department: a scoping review
    Lee, Yi-Chih
    Ng, Chip-Jin
    Hsu, Chun-Chuan
    Cheng, Chien-Wei
    Chen, Shou-Yen
    BMC EMERGENCY MEDICINE, 2024, 24 (01)