Symplectic reduction and Lagrangian submanifolds of Gr(1, n )

被引:0
|
作者
Tyurin, N. A. [1 ,2 ]
机构
[1] Joint Inst Nucl Res, Bogoliubov Lab Theoret Phys, Dubna, Moscow, Russia
[2] Russian Acad Sci, Steklov Math Inst, Moscow, Russia
关键词
algebraic variety; symplectic form; Lagrangian submanifold; Grassmannian; EXAMPLES; CYCLES;
D O I
10.4213/sm10053e
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
New examples of Lagrangian submanifolds of the complex Grassmannian Gr(1, n) with the standard Ka<spacing diaeresis>hler form are presented. The scheme of their construction is based on two facts: first, we put forward a natural correspondence between the Lagrangian submanifolds of a symplectic manifold obtained by symplectic reduction and the Lagrangian sub- manifolds of a large symplectic manifold carrying a Hamiltonian action of some group, to which this reduction is applied; second, we show that for some choice of generators of the action of T k on Gr(1, n), k = 2 , ... , n 1 , and for suitable values of the moment map there exists an isomorphism Gr(1, n)//Tk similar to= tot(P(tau) x <middle dot> <middle dot> <middle dot> x P(tau)-> Gr(1, n k)), where the total space of the Cartesian product of k copies of the projectivization of the tautological bundle tau -> Gr(1, n k) is on the right. Combining these two facts we obtain a lower bound for the number of topologically distinct smooth Lagrangian submanifolds in the original Grassmannian Gr(1, n). Bibliography: 5 titles.
引用
收藏
页码:1426 / 1439
页数:14
相关论文
共 50 条
  • [21] Symplectic submanifolds and symplectic ideals
    Oh, SQ
    JOURNAL OF LIE THEORY, 2006, 16 (01) : 131 - 138
  • [22] INDEX OF LAGRANGIAN SUBMANIFOLDS OF CP(N) AND THE LAPLACIAN OF 1-FORMS
    URBANO, F
    GEOMETRIAE DEDICATA, 1993, 48 (03) : 309 - 318
  • [23] Lagrangian Submanifolds Foliated by(n-1)-spheres in R2n
    Henri ANCIAUX
    Ildefonso CASTRO
    Pascal ROMON
    Acta Mathematica Sinica(English Series), 2006, 22 (04) : 1197 - 1214
  • [24] SO(n)-Invariant Special Lagrangian Submanifolds of ℂn+1 with Fixed Loci*
    Robert L. Bryant
    Chinese Annals of Mathematics, Series B, 2006, 27 : 95 - 112
  • [25] Lagrangian submanifolds foliated by (n-1)-spheres in R2n
    Anciaux, Henri
    Castro, Ildefonso
    Romon, Pascal
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2006, 22 (04) : 1197 - 1214
  • [26] Symplectic duality for T * Gr(k, n)
    Dinkins, Hunter
    MATHEMATICAL RESEARCH LETTERS, 2022, 29 (03) : 663 - 690
  • [27] Coisotropic submanifolds of linear Poisson manifolds and Lagrangian anchored vector subbundles of the symplectic cover
    Aymerich-Valls, M.
    Marrero, J. C.
    XX INTERNATIONAL FALL WORKSHOP ON GEOMETRY AND PHYSICS, 2012, 1460 : 154 - 158
  • [28] LAGRANGIAN SUBMANIFOLDS AND LAGRANGIAN DYNAMICS
    TULCZYJEW, WM
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1976, 283 (08): : 675 - 678
  • [29] LAGRANGIAN SUBMANIFOLDS
    WEINSTEI.AD
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 21 (01): : A232 - A232
  • [30] Lagrangian submanifolds
    Audin, M
    SYMPLECTIC GEOMETRY OF INTEGRABLE HAMILTONIAN SYSTEMS, 2003, : 1 - +