Sub-voxel based finite element modelling of fibre-reinforced composites

被引:0
|
作者
Auenhammer, Robert M. [1 ]
Oddy, Carolyn [1 ,2 ]
Kim, Jisoo [3 ]
Mikkelsen, Lars P. [4 ]
机构
[1] Chalmers Univ Technol, Dept Ind & Mat Sci, Mat & Computat Mech, SE-41296 Gothenburg, Sweden
[2] GKN Aerosp Sweden, Dept Automat & Composite Technol, SE-46138 Trollhattan, Sweden
[3] Korea Res Inst Stand & Sci, Strateg Technol Res Inst, Daejeon 34113, South Korea
[4] Tech Univ Denmark, Dept Wind & Energy Syst, Composites Mfg & Testing, DK-4000 Roskilde, Denmark
基金
欧盟地平线“2020”; 瑞典研究理事会;
关键词
Fibre-reinforced composites; Material modelling; Mori-Tanaka; Anisotropic eshelby inclusion; Small-angle X-ray scattering; Tensor tomography;
D O I
10.1016/j.simpa.2024.100668
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
For fibre-reinforced composites, most of their mechanical properties is tied to the fibre scale. Thus, imaging- based characterisation demands resolving fibres to characterise these materials accurately. However, high resolutions limit the field of view and lead to lengthy acquisition times. Emerging non-destructive imaging technologies and algorithms now accurately provide fibre orientations without detecting individual fibres. Studies show that voxel sizes up to fifteen times the fibre diameter are feasible, still allowing accurate tensile modulus predictions. Our presented software incorporates sub-voxel fibre orientation distributions using ultra- low-resolution three-dimensional X-ray tomography data in a numerical model, providing an effective method for characterising these materials.
引用
收藏
页数:5
相关论文
共 50 条