Enhancing Clinical Trial Summarization: Leveraging Large Language Models and Knowledge Graphs for Entity Preservation

被引:0
|
作者
Nahed, Pouyan [1 ]
Kambar, Mina Esmail Zadeh Nojoo [1 ]
Taghva, Kazem [1 ]
机构
[1] Univ Nevada, Dept Comp Sci, Las Vegas, NV 89154 USA
基金
美国国家科学基金会;
关键词
Large language models; Clinical data; Summarization; Named entity preservation; Knowledge graph;
D O I
10.1007/978-981-97-3302-6_26
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
ClinicalTrials.gov is an accessible online medical resource for researchers, healthcare professionals, and policy designers seeking detailed information on clinical trials. Summarizing these long clinical records can significantly reduce the time needed for the database users as the process transforms comprehensive information into concise synopses, preserving the essential meaning and facilitating understanding. In this paper, we employ the Bidirectional and Auto-Regressive Transformers model to generate the trials' brief summaries. Our contributions provide new preprocessing techniques for model training, which leads to a robust summarization model. The fine-tuned model significantly enhanced ROUGE-1, ROUGE-2, and ROUGEL F1-scores by 14%, 23%, and 20%, respectively, compared to previous studies. Additionally, we present an innovative knowledge graph based on entity classes to assess the generated summaries. This graph not only quantifies the essential entities transformed from the original text to the summaries but also provides insights into their specific order and arrangement in sentences.
引用
收藏
页码:325 / 336
页数:12
相关论文
共 50 条
  • [21] Entity Spatio-temporal Evolution Summarization in Knowledge Graphs
    Yang, Erhe
    Hao, Fei
    Gao, Jie
    Wu, Yulei
    Min, Geyong
    11TH IEEE INTERNATIONAL CONFERENCE ON KNOWLEDGE GRAPH (ICKG 2020), 2020, : 181 - 187
  • [22] Optimizing model parameter for entity summarization across knowledge graphs
    Yan, Jihong
    Xu, Chen
    Li, Na
    Gao, Ming
    Zhou, Aoying
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2019, 37 (01) : 293 - 318
  • [23] Leveraging Large Language Models for Enhancing Literature-Based Discovery
    Taleb, Ikbal
    Navaz, Alramzana Nujum
    Serhani, Mohamed Adel
    BIG DATA AND COGNITIVE COMPUTING, 2024, 8 (11)
  • [24] Large language models encode clinical knowledge
    Singhal, Karan
    Azizi, Shekoofeh
    Tu, Tao
    Mahdavi, S. Sara
    Wei, Jason
    Chung, Hyung Won
    Scales, Nathan
    Tanwani, Ajay
    Cole-Lewis, Heather
    Pfohl, Stephen
    Payne, Perry
    Seneviratne, Martin
    Gamble, Paul
    Kelly, Chris
    Babiker, Abubakr
    Schaerli, Nathanael
    Chowdhery, Aakanksha
    Mansfield, Philip
    Demner-Fushman, Dina
    Arcas, Blaise Aguera y
    Webster, Dale
    Corrado, Greg S.
    Matias, Yossi
    Chou, Katherine
    Gottweis, Juraj
    Tomasev, Nenad
    Liu, Yun
    Rajkomar, Alvin
    Barral, Joelle
    Semturs, Christopher
    Karthikesalingam, Alan
    Natarajan, Vivek
    NATURE, 2023, 620 (7972) : 172 - +
  • [25] Large language models encode clinical knowledge
    Karan Singhal
    Shekoofeh Azizi
    Tao Tu
    S. Sara Mahdavi
    Jason Wei
    Hyung Won Chung
    Nathan Scales
    Ajay Tanwani
    Heather Cole-Lewis
    Stephen Pfohl
    Perry Payne
    Martin Seneviratne
    Paul Gamble
    Chris Kelly
    Abubakr Babiker
    Nathanael Schärli
    Aakanksha Chowdhery
    Philip Mansfield
    Dina Demner-Fushman
    Blaise Agüera y Arcas
    Dale Webster
    Greg S. Corrado
    Yossi Matias
    Katherine Chou
    Juraj Gottweis
    Nenad Tomasev
    Yun Liu
    Alvin Rajkomar
    Joelle Barral
    Christopher Semturs
    Alan Karthikesalingam
    Vivek Natarajan
    Nature, 2023, 620 : 172 - 180
  • [26] Workshop on Enterprise Knowledge Graphs using Large Language Models
    Gupta, Rajeev
    Srinivasa, Srinath
    PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, : 5271 - 5272
  • [27] Knowledge Graphs, Large Language Models, and Hallucinations: An NLP Perspective
    Lavrinovics, Ernests
    Biswas, Russa
    Bjerva, Johannes
    Hose, Katja
    JOURNAL OF WEB SEMANTICS, 2025, 85
  • [28] ESCARGOT: an AI agent leveraging large language models, dynamic graph of thoughts, and biomedical knowledge graphs for enhanced reasoning
    Matsumoto, Nicholas
    Choi, Hyunjun
    Moran, Jay
    Hernandez, Miguel E.
    Venkatesan, Mythreye
    Li, Xi
    Chang, Jui-Hsuan
    Wang, Paul
    Moore, Jason H.
    BIOINFORMATICS, 2025, 41 (02)
  • [29] GenKP: generative knowledge prompts for enhancing large language models
    Li, Xinbai
    Peng, Shaowen
    Yada, Shuntaro
    Wakamiya, Shoko
    Aramaki, Eiji
    APPLIED INTELLIGENCE, 2025, 55 (06)
  • [30] Enhancing Large Language Models Through External Domain Knowledge
    Welz, Laslo
    Lanquillon, Carsten
    ARTIFICIAL INTELLIGENCE IN HCI, PT III, AI-HCI 2024, 2024, 14736 : 135 - 146