Kinematic Synthesis of a Serial Manipulator Using Gradient-Based Optimization on Lie Groups

被引:0
|
作者
Shirafuji, Shouhei [1 ]
Shimamura, Keiichiro [1 ]
机构
[1] Kansai Univ, Fac Engn Sci, Dept Mech Engn, Suita, Osaka 5648680, Japan
来源
IEEE ROBOTICS AND AUTOMATION LETTERS | 2025年 / 10卷 / 03期
关键词
Kinematics; mechanism design;
D O I
10.1109/LRA.2025.3534064
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
This paper addresses a specialized kinematic synthesis problem: designing a manipulator capable of following a specific trajectory of end-effector positions and orientations with minimal actuators. This requires optimizing the robot's kinematic parameters and solving inverse kinematics to ensure its configuration aligns with the desired trajectory. This paper introduces a method for optimizing robot design by representing joint motions using Lie algebra and applying the Levenberg-Marquardt (LM) algorithm. The proposed approach integrates inverse kinematics into the optimization process, solving both problems simultaneously. To achieve this, the method computes derivatives of the end-effector's positions and orientations with respect to both kinematic parameters and the robot's configuration, leveraging the intrinsic relationship between Lie groups and their corresponding Lie algebra. The use of Lie algebra-based derivatives eliminates the singularities inherent in traditional kinematic parameterizations, enhancing stability and smoothness in the optimization process. Experimental results on a synthetic example demonstrate the method's robustness, showing independence from initial parameter selection and superiority over approaches based on local parameterization.
引用
收藏
页码:2550 / 2557
页数:8
相关论文
共 50 条
  • [21] A skeletonization algorithm for gradient-based optimization
    Menten, Martin J.
    Paetzold, Johannes C.
    Zimmer, Veronika A.
    Shit, Suprosanna
    Ezhov, Ivan
    Holland, Robbie
    Probst, Monika
    Schnabel, Julia A.
    Rueckert, Daniel
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 21337 - 21346
  • [22] On using a gradient-based method for heliostat field layout optimization
    Lutchman, S. L.
    Groenwold, A. A.
    Gauche, P.
    Bode, S.
    PROCEEDINGS OF THE SOLARPACES 2013 INTERNATIONAL CONFERENCE, 2014, 49 : 1429 - 1438
  • [23] A gradient-based direct aperture optimization
    Yang, Jie
    Zhang, Pengcheng
    Zhang, Liyuan
    Gui, Zhiguo
    Shengwu Yixue Gongchengxue Zazhi/Journal of Biomedical Engineering, 2018, 35 (03): : 358 - 367
  • [24] Gradient-based optimization of spintronic devices
    Imai, Y.
    Liu, S.
    Akashi, N.
    Nakajima, K.
    APPLIED PHYSICS LETTERS, 2025, 126 (08)
  • [25] Catalyst for Gradient-based Nonconvex Optimization
    Paquette, Courtney
    Lin, Hongzhou
    Drusvyatskiy, Dmitriy
    Mairal, Julien
    Harchaoui, Zaid
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 84, 2018, 84
  • [26] Trivializations for Gradient-Based Optimization on Manifolds
    Lezcano-Casado, Mario
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [27] ON THE ADAPTIVITY OF STOCHASTIC GRADIENT-BASED OPTIMIZATION
    Lei, Lihua
    Jordan, Michael I.
    SIAM JOURNAL ON OPTIMIZATION, 2020, 30 (02) : 1473 - 1500
  • [28] A Gradient-Based Optimization Algorithm for LASSO
    Kim, Jinseog
    Kim, Yuwon
    Kim, Yongdai
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2008, 17 (04) : 994 - 1009
  • [29] Gradient-Based Multiobjective Optimization with Uncertainties
    Peitz, Sebastian
    Dellnitz, Michael
    NEO 2016: RESULTS OF THE NUMERICAL AND EVOLUTIONARY OPTIMIZATION WORKSHOP NEO 2016 AND THE NEO CITIES 2016 WORKSHOP, 2018, 731 : 159 - 182
  • [30] End-Fire Array Synthesis Using Gradient-Based Numerical Optimization with Analytical Derivatives
    Koziel, Slawomir
    Ogurtsov, Stanislav
    2012 LOUGHBOROUGH ANTENNAS & PROPAGATION CONFERENCE (LAPC), 2012,